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10 Inferential statistics II: Tests for
Discrete-Choice Models

LR-test and other performance
metrics

I 10.1 Significance Tests

I 10.2 Likelihood-Ratio (LR) Test

I 10.3 Goodness-of-Fit Measures
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10.1 Significance Tests for Discrete-Choice Models

I The parameter test procedures are exactly the same as that of regression models.
Because we only consider the asymptotic limit, the test statistic is always Gaussian:

I Confidence interval of a parameter βm:

CIα(βm) = [β̂m −∆α, β̂m + ∆α], ∆α = z1−α/2
√
Vmm

I Test of a parameter βm for H0 : βj = βj0, ≥ βj0, or ≤ βj0:

T =
β̂j − β̂j0√

Vjj
∼ N(0, 1) |H∗

0

I p-values for H0 : βj = βj0, ≥ βj0, or ≤ βj0, respectively:

p= = 2
(
1− Φ(|tdata|)

)
, p≤ = 1− Φ(tdata), p≥ = Φ(tdata)

I As in regression, a factor 4 of more data halves the error
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10.2. Likelihood-Ratio (LR) Test

Like in regression (F-test), one sometimes wants to test null hypotheses fixing several
parameters simultaneously to given values, i.e., H0 corresponds to a restraint model

I H0: The restraint model with some fixed parameters and Mr remaining parameters
describes the data as well as the full model with M parameters

I Test statistics:

λLR = 2 ln

 L
(
β̂
)

Lr
(
β̂

r
)
 = 2

[
L̃
(
β̂
)
− L̃r

(
β̂

r
)]
∼ χ2(M −Mr) if H0

I Data realization: calibrate both M and Mr and evaluate λLR
data

I Result: reject H0 at α based on the 1− α quantile:

λLR
data > χ2

1−α,M−Mr

p-value: p = 1− Fχ2(M−Mr)

(
λLR

data

)
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Example: Mode choice for the route to this lecture

Distance class n
Distance
rn

i = 1 (ped/bike) i = 2 (PT/car)

n = 1: 0-1 km 0.5 km 7 1
n = 2: 1-2 km 1.5 km 6 4
n = 3: 2-5 km 3.5 km 6 12
n = 4: 5-10 km 7.5 km 1 10
n = 5: 10-20 km 15.0 km 0 5

Vn1(β1, β2) = β1rn + β2,

Vn2(β1, β2) = 0

I β1: Difference in distance sensitivity (utility/km) for choosing ped/bike over PT/car
(expected < 0)

I β2: Utility difference ped/bike over PT/car at zero distance (> 0)

Do the data allow to distinguish this model from the trivial model Vni = 0?
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LR test for the corresponding Logit models

I H0: The trivial model Vni = 0 describes the data as well as the full model
Vn1(β1, β2) = (β1rn + β2)δi1

I Test statistics: λLR = 2
[
L̃(β̂1, β̂2)− L̃(0, 0)

]
∼ χ2(2)|H0

I Data realization (1 L̃-unit per contour): λLR
data = 2(−26.5 + 35.5) = 18

I Decision: Rejection range λLR > χ2
2,0.95 = 5.99 ⇒ H0 rejected.
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Fit quality of the full model

? What would be the modeled
ped/bike modal split for the null
model Vni = 0? 50:50

? Read off from the L̃ contour plot
the parameter of the AC-only
model Vni = β2δi1 and give the
modeled modal split
β̂2 = ln(P1/P2) = −0.5, OK with

P1/P2 = eβ̂2 ≈ N1/N2 = 20/32

? Motivate the negative correlation
between the parameter errors This
makes at least sure that, in case
of correlated errors, about the
same fraction chooses
alternative 2 as for the calibrated
model
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10.3 Goodness-of-Fit Measures

I The parameter tests for equality and the LR test are related to significance: Is the
more complicated of two nested models significantly better in describing the data?

I This can be used to find the best model using the top-down ansatz:

Make is as simple as possible but not simpler!

I Problem: For very big samples, nearly any new parameter gives significance and the
top-down ansatz fails

I More importantly: Significance/LR tests cannot give evidence for missing but
relevant factors

I A further problem: We cannot compare non-nested models

I Finally, in reality, one often is interested in effect strength (difference in the fit and
validation quality), not significance

⇒ we need measures for absolute fit quality
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Information-based goodness-of-fit (GoF) measures

I Akaike’s information criterion:

AIC = −2L̃+ 2M
N

N − (M + 1)

I Bayesian information criterion:

BIC = −2L̃+M lnN

N : number of decisions; M : number of parameters

I Both criteria give the needed additional information (in bit) to obtain the actual micro-data
from the model’s prediction, including an over-fitting penalty: the lower, the better.

I Both the AIC and BIC are equivalent to the corresponding GoF measures of regression.

I the BIC focuses more on parsimonious models (low M).

I For nested models satisfying the null hypothesis of the LR test and N �M , the expected
AIC is the same (verify!). However, since the AIC is an absolute measure, it allows
comparing non-nested models.
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GoF measures corresponding to the coefficient of determination R2 of linear

models (L̃0: log-likelihood of the estimated AC-only or trivial model)

I LR-Index resp. McFadden’s R2:
ρ2 = 1− L̃

L̃0

I Adjusted LR-Index/McFadden’s R2:

ρ̄2 = 1− L̃−M
L̃0

I The LR-Index ρ2 and the adjusted LR-Index ρ̄2 correspond to the coefficient of determination R2

and the adjusted coefficient R̃2 of regression models, respectively: The higher, the better.

I In contrast to regression models, even the best-fitting model has ρ2 and ρ̄2 values far from 1. Values
as low as 0.3 may characterize a good model, see the Example 9.2.1 , while R2 = 0.3 means a really bad
fit for a regression model.

I An over-fitted model with M parameters fitting N = M decisions reaches the “ideal” LR-index value
ρ2 = 1 while ρ̄2 is near zero.
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Questions on GoF metrics

? Discuss the model to be tested, the AC-only model, and the trivial model in the
context of weather forecasts
Full forecast info, info from climate table, 50:50

? Give the log-likelihood of the AC-only and trivial models if there are I alternatives
and Ni decisions for alternative i (total number of decisions N =

∑I
i=1Ni)

Trivial model: Pni = 1/I, L̃ =
∑

n lnPin =
∑

iNi lnPi = −N ln I;
AC-only model: Pni = Ni/N , L̃ =

∑
iNi lnPi = N lnN −

∑
iNi lnNi

? Consider a binary choice situation where the N/2 persons with short trips chose the
pedestrian/bike option with a probability of 3/4, and the PT/car option with 1/4.
The other N/2 persons with long trips had the reverse modal split with a ped/bike
usage of 25 %, only.
What would be the LR-index for the “perfect” model exactly reproducing the
observed 3:1 and 1:3 modal splits for the short and long trips, respectively?
(less than 0.18)
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