
Exam to the Lecture

Traffic Dynamics and Simulation

SS 2024

Solutions
Total 120 points

Problem 1 (40 points)

(a) Signalized intersections are expected to be a little bit downstream of the vehicles
stopping without a leader, i.e., at about x1 = 50m and x2 = 250m (and possibly at
x3 = 355m). The red phase starts when the first leader about to stop behind the
traffic light begins to decelerate and ends a little bit before the first vehicle starts to
accelerate (reaction time), i.e., 317 s - 350 s at x1 and 317 s - 378 s at x2 (and 310 s -
335 s at x3 but the red phase may have started earlier)

(b) Explain the within-section beginnings and endings of some trajectories using the
information that the displayed trajectories are for lane 2:

– beginning trajectories: lane changes 3-2 and 1-2

– ending trajectories: lane changes 2-3 and 2-1

(c) Calibration of trajectory 528:

– Time gap T : following episode 360 s-370 s.

– Minimum gap s0: gap when stopped around 380 s (besides the trajectories, the
vehicle lengths are needed for this as well).

– Comfortable deceleration b: deceleration phase 340 s-350 s but not the decel-
eration episode around 370 s: In the latter, the value of the true comfortable
deceleration for the driver of this trajectory is just bounded from below by the
deceleration of the leaders – without leaders, this driver may decelerate later
implying a higher deceleration b.

– Desired speed v0 and acceleration parameter a are not identified because the
desired speed is never reached (this driver is always in the interacting regime),
so v0 can take on any value equal to or higher than the maximum observed
speed. Likewise, a can be any value that is equal or greater than the leader’s
acceleration.

(d) Parameter identification:

– Desired speed v0: a free-driving period at constant speed is needed: trajectory
487 at t ≤ 310 s. It is unclear if trajectory 509 satisfies this criterion or if
its acceleration phase around 355 s is directly followed by a deceleration phase
without reaching v0 (indicating this trajectory will give full marks)

– Acceleration a. Free accelerations are observed for trajectory 509 around 355 s
and for trajectory 487 around 380 s (giving one trajectory will give full marks).

(e) Fundamental diagram (FD): With trajectory data, an unbiased estimation of speed,
density, and flow values is possible if suitable traffic states exist. Any three out of
the following four estimates define the triangular fundamental diagram (FD):

1



– Maximum density (waiting queue at t = 380 s):

ρmax = 1/leff =
8

60m
= 133 veh/km,

– wave velocity (sequence of the first eight starting vehicles between 380 s and
390 s):

w =
−60m

10 s
= −21.6 km/h,

– outflow from a queue or jam Qout ≤ Qmax (the equality is only valid once V0 is
reached) by counting the vehicles passing x = 250m after 380 s:

Qmax ≥
10 veh

20 s
= 1 800 veh/h,

– desired=maximum speed v0: The average maximum speed of the trajectories
for t < 320 s (taking the fast vehicle 487 would lead to a bias: V0 is the average
desired speed over all trajectories):

V0 = 20m/s = 72 km/h.

Since the calculation of the outflow is error prone and the estimation above is biased
towards lower values (the outflow is only equal to Qmax once it reaches the desired
speed), we use V0, w, and ρmax to calculate the FD as

Q(ρ) = min

(

V0ρ,
1

T

(

1−
ρ

ρmax

))

= min (V0ρ, w(ρ− ρmax)) .

Here, we expressed the FD parameter T by observable values via T = −(ρmaxw)
−1.

Side information: Using the estimates as above, the implied maximum flow (equat-
ing the two terms of the minimum function) is given by

Qcalc
max =

V0ρmax

1− V0

w

= 0.61 veh/s = 2210 veh/h

confirming the suspicion that estimating Qmax by the number of crossing vehicles
gives a bias towards lower values.
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Problem 2 (40 points)

(a) In macroscopic models of second order, both the local density ρ(x, t) and the speed
V (x, t) are independent dynamical variables while the flow is given by Q = ρV
(we can equivalently, chose the dynamical variables ρ and Q with the speed given
by V = Q/ρ). In contrast, in first-order models, the speed is not an independent
dynamic variable but given in terms of the local density by the static fundamental
relation V (x, t) = Ve(ρ(x, t))

(b) Since first-order or LWR models have a static speed, no flow instabilities are possible,
only a single transition free → congested if the demand exceeds the supply, i.e., the
local capacity. Suitably parameterized second-order models show string instability,
i.e., they can describe growing traffic waves and flow instabilities.

(c) The dynamic speed equation of the Kerner-Konhäuser model is given by

dV

dt
≡

∂V

∂t
+ V

∂V

∂x
=

Ve(ρ)− V

τ
−

c20
ρ

∂ρ

∂x
+

µ

ρ

∂2V

∂x2

Multiplying this equation by τ gives

τ
∂V

∂t
+ τV

∂V

∂x
= Ve(ρ)− V −

τc20
ρ

∂ρ

∂x
+

τµ

ρ

∂2V

∂x2

For continuous densities and speeds, all partial derivatives of ρ(x, t) and V (x, t) are
finite so, for τ → 0, all terms containing τ tend to zero resulting in

Ve(ρ)− V = 0

which is precisely the fixed speed definition V = Ve(ρ) characterizing LWR models.

(d) Which models suit best? We abbreviate

– MIC=microscopic models,

– LWR=Lighthill-Whitham-Richards models (first-order macroscopic models),

– MAC2 (second-order macroscopic models)

and check them for following tasks:

(i) Model the dynamics (including traffic breakdown) at an off-ramp bottleneck :
MIC. While also LWR can model breakdowns and MAC2 even traffic instabil-
ities, both models treat off -ramps as a local increase of capacity (since part
of the traffic leaves the road), i.e., “anti-bottlenecks” which never lead to a
breakdown. In contrast, when adding lane changing to microscopic models, the
associated perturbation may trigger a breakdown even if there is less traffic
after the off-ramp.

(ii) determine if it is likely that on-ramp bottlenecks on a freeway will lead to traffic
jams in the vacation season: LWR. Both MIC and MAC2 are “overkill” in this
situation since only the comparison of demand (vacation traffic) and supply
(identifying the bottlenecks) is needed for this task.

(iii) model the effect of empty and full trucks at gradient sections : MIC. Macroscopic
models are only possible if extending them to at least two vehicle classes and
two lanes resulting in four interacting partial densities (and additionally four
speed fields for MAC2) leading to very coomplex models.
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(iv) creating responsive surrounding traffic in driving simulators : Clearly MIC. The
people driving in simulators want to see vehicles, not local densities.

(v) Determine instabilities to traffic waves as a function of the density and the
average driving style: MAC2. MIC would be possible as well but would be
“overkill”.

(e) Full Gipps model with the model parameters desired speed v0, acceleration a, time
gap T , minimum gap s0, safety cushion ϑ, assumed own deceleration b, and assued
leader’s deceleration bl. Associate following driving characteristics with high or low
values of these parameters (normal values or irrelevant parameters need not to be
mentioned):

– fast: v0 high,

– quickly accelerating: a high,

– aggressive: v0, a, and b high; s0 and T low,

– anticipative/experienced: b low, bl > b, a rather high (leads to responsive driv-
ing),

– safety oriented: T and s0 high, bl > b, v0 rather low.
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Problem 3 (40 points)
Given is following freeway road section with a lane-closing bottleneck and also the number
of the real-valued effective number L(x) of lanes as a function of the position x:

x=x B

IIIII
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1 km

x

2

3

7 km 8 km
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Region I
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(a) If a lane closing is ahead, the drivers on the lane to be closed will change to the other
lanes well in advance (several 100m) so hardly anybody wants to drive on this lane
near the lane closing. This means, the effective capacity of this lane is continuously
reduced from Qmax to zero at or very near the closing point. For the whole diectional
road, we therefore have a location dependent capacity C(x) = L(x)Qmax with the
fractional lane number L(x) continuously decreasing from 3 to 2 when getting closer
to the lane closing.

(b) The fundamental diagram is tridiagonal and given by

Q(ρ) = max

(

V0ρ,
1

T
(1−

ρ

ρmax

)

)

.

In terms of the observed per-lane quantities Qmax = 1 800 veh/h = 0.5 veh/s, wave
speed w = −18 km/h = −5m/s, and desired speed V0 = 90 km/h = 25m/s, we
obtain the density at capacity ρc = Qmax/V0 = 20 veh/km, the maximum density
ρmax = ρc −Qmax/w = 120 veh/km (using Q(ρc) = Qmax and Q′(ρ) = w for ρ > ρc),
and the implied time gap T = (ρmaxw)

−1 = 1.67 s.

(c) The bottleneck capacity is given by CB = 2Qmax = 3 600 veh/h which is above
Qin = 2 700 veh/h. Hence, no traffic breakdown.

(i) Total quantities: Since there is no congestion and we have a constant desired
speed, the total quantities are unchanged throughout the considered road sec-
tion and given by

Qtot(x) = Qin = 2 700 veh/h, ρtot(x) =
Qtot(x)

V0

= 30 veh/km.

(ii) Since both flow and densities are extensive quantities (they increase with the
number of vehicles), the total quantities are equal to the per-lane quantities
times the number of lanes. Hence

Q(x) =
Qtot(x)

L(x)
=

Qin

L(x)
, ρ(x) =

ρtot(x)

L(x)
=

Qin

V0L(x)
.

5



(d) Traffic will break down at a position where the sudden demand surge to Qin =
4 500 veh/h will exceed the local capacity, for the first time. Since Qin = 2.5Qmax

corresponds to the capacity for 2.5 fractional lanes and the fractional lane number
decreases linearly from 3 to 2 between 7 km and 8 km, the breakdown location is
at xbd = 7.5 km. The flow surge for x < xbd can be considered as a shockwave in
the free-flow regime propagating at a velocity equal to V0 = 90 km/h, or 1.5 km per
minute. Hence, this shock reaches the breakdown point at t = xbd/V0 = 5minutes.

(e) Info: After a short time, the downstream front of the traffic jam forms at the position
where the minimum local capacity is reached for the first time at x = xB = 8 km

– Region 1a (free traffic):

Q1a =
Qin

3
= 1 500 veh/h/lane,

ρ1a =
Qin

V0

= 16.7 veh/km/lane,

V1a = V0 = 90 km/h.

– Region 1b (congested traffic):

Q1b = Cbottl3 = 1 200 veh/h/lane,

ρ1b = ρcong(Q1b) = ρmax(1−Q1bT ) = 53.3 veh/km/lane,

V1b =
Q1b

ρ1b
= 6.25m/s = 22.5 km/h.

(f) Shock-wave formula:

c =
Q1b −Q1a

ρ1b − ρ1a
= −2.27m/s = −8.18 km/h.
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