
Exam to the Lecture

Traffic Dynamics and Simulation

SS 2023

Solutions
Total 120 points

Problem 1 (40 points)

(a) In microscopic models, the main dynamical elements are the vehicles and drivers
(driver-vehicle unit) while, in macroscopic models, this is aggregated to locally av-
eraged, mostly continuous spatiotemporal quantities.

– Variables micro: speed vi, gap to the leader si, acceleration v̇i of vehicle i

– Macro: Local density ρ(x, t), speed V (x, t), flow Q(x, t).

(b) Which class is better suited?

(i) Determine if it is likely that construction work at a freeway will lead to traffic
jams in the vacation season: Macroscopic model since congestions and travel
times are relevant which can well be described using macroscopic models.

(ii) will more assisted or autonomous vehicles lead to more or less congestions?
Microscopic models are more suitable since they allow to explicitly model a
varying penetration rate of autonomous vehicle among human-driven ones.

(iii) creating responsive surrounding traffic in driving simulators : Only micro be-
cause you need individual vehicles.

(iv) influence of dyamic routing on congestions and traffic flow quality : Macroscopic
models are enough since both the cause is macroscopic (congestions, difference
in travel times), and also the effect (a varying percentage of vehicle, i.e., a
partial flow of vehicles uses the deviation).

(v) will traffic jams lead to more or less fuel consumption? Does it depend on the
kind of jam (homogeneous or traffic waves)? Here, a modal fuel consumption
model of individual cars (micro-simulation) is more suitable since only this class
of consumption/emission models depend on the detailled driving mode (speed,
acceleration profile).

(c) Model formulated as ...

– set of coupled ordinary differential equations: any time continuous car-following
model such as the OVM or the IDM.

– iterated map, i.e., a mapping of the state at time t to a later time t+∆t. Either
a time continuous car-following model together with explicit update rules, e.g.,
ballistic update for the speeds and positions, vi(t+∆t) = vi(t)+f(si, vi,∆vi)∆t
and xi(t+∆t) = 1

2
[xi(t)+(vi(t)+vi(t+∆t)]∆t, or Newell’s car-following model

which is directly formulated as an iterated map

– partial differential equation: Macroscopic flow model, e.g. the LWR model

– cellular automaton: Nagel-Schreckenberg model.
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(d) To model different driving styles in microscopic models, one sets the parameters of
suitable models accordingly (I gave both the general answer and the specific IDM
parameters; either of both will give full marks).

– fast vs slow: change the desired speed parameter (nearly any micromodel has
such a parameter); IDM: v0,

– agile/responsive vs sluggish/unresponsive: Depending on the model, change the
reaction time, the desired acceleration/braking deceleration, or both; IDM: a,

– aggressive vs relaxed: change the desired time gap or, if the model does not
contain such a parameter, change the parameters affecting the fundamental
diagram (gap vs speed) such that the time gap=space gap divided by speed
changes; IDM: T , possibly s0,

– anticipative vs not experienced: Change the response to the relative speed (ap-
proaching rate) and/or, if present, the multi-anticipation parameters (looking
at the next-nearest vehicle etc); IDM: b.

Problem 2 (20 points)

For a parking duration (in hours) obeying a uniform (0,2) distribution, we have for the
parking occupancy number xn at the end of the one-hour interval n ending at n hours as
a function of the inflow In during this hour and the inflow In−1 in the previous interval:

Xn =
3

4
In +

1

4
In−1.

Motivation: Drivers arriving just at n hours are still here with 100% probability, those
arriving one hour earlier with 50%probability, so on average 75%. The drivers arriving
in the previous period may also still be present, with 50% for those arriving at the end
of the previoius interval, and zero for those having arrived at the beginning, i.e., 2 hours
ago., so, on average, 25%.
Application assuming no occupation at 9:00 h:

Perios 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00
Hourly arrival number 500 1 000 1 000 800

Occupancy 375 875 1 000 850

Occupancy at 11:30h: Since, during each one-hour interval, we have constant inflows
and constant ouflows (this follows from the uniform parking duration), we just at 11:30h
have the arithmetic average:

X(11 : 30 h) = (X11 +X12)/2 = 938 vehicles.
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Problem 3 (20 points)

(a) The driving resistance when driving at constant speed is given by

F (v) = µmg +
1

2
cdρAv

2.

At 50 km/h = 50/3.6m/s and 130 km/h = 130/3.6m/s, we obtain

F (50/3.6m/s) = 286.5N, F (130/3.6m/s) = 748.5N.

The fuel consumption per distance is given by

Cx = cspec

(

Wmech + P0t

x

)

= cspec

(

Fx+ P0t

x

)

= cspec

(

F +
P0

v

)

.

Here, we do not need any maximum function since the driving resistance at constant
speed and on level roads is always positive. Furthermore, the consumption per
100 km is just given by C100 = Cx100 000m.

For the two speeds, we have

C100(50/3.6m/s) = 3.35 l/100 km, C100(130/3.6m/s) = 6.25 l/100 km.

(b) As in Part (a), the needed output energy from the motor is given by

W100 =

(

F +
P0

v

)

100 000m

With a motor efficiency ηm = 0.9 and a battery charging/discharging efficiency of
ηb = 0.9, we need following energy stored in the battery to drive 100 km:1

W100,batt =
W100

ηbηm

For the two speeds, we need

W100,batt(50/3.6m/s) = 51.5e6Ws, W100,batt(130/3.6m/s) = 103.1e6Ws,

or in kWh (division by 3.6e6):

W100,batt(50/3.6m/s) = 14.3 kWh, W100,batt(130/3.6m/s) = 28.6 kWh.

Problem 4 (40 points)

Given is a two-lane freeway section with an onramp:

L rmp

w

Region 1a Transition 1c Region 2Region 1b

1At charging, another ηb will be in the denominator for the amount of electricity drawn from the charging

station.
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It is to be modelled with the LWR model using the fundamental diagram

Qe(ρ) = min

[

V0ρ,
1

T
(1− leffρ)

]

.

with leff = 8m, T = 1.4 s, and v0 = 108 km/h.

(a) The fundamental diagram is tridiagonal with the points (0,0), (ρc, Qmax), and ρmax, 0)
with

ρc =
1

V0T + leff
= 20 km, Qmax = V0ρc = 2 160 veh/h, ρmax =

1

leff
= 125 veh/km

note: Watch out for the unit conversions!
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(b) With Qmax = 2 000 veh/h, the capacity of the main road is 2Qmax = 4 000 veh/h
which is greater than the mainroad and onramp demand combined. Thus, no break-
down will occur and the main road will be in the free part of the fundamental
diagram (FD) with speed V = 30m/s in all regions.

– Regions 1a and 1b:

Qtot
1 = Qin = 3 000 veh/h,

Q1 = Qin/2 = 1 500 veh/h,

ρtot1 = Qtot
1 /V = 27.78 veh/km,

ρ1 = ρtot1 /2 = 13.89 veh/km

– Region 2:

Qtot
2 = Qin +Qon = 3 500 veh/h,

Q2 = Qin/2 = 1 750 veh/h,

ρtot2 = Qtot
2 /V = 32.41 veh/km,

ρ2 = ρtot2 /2 = 16.20 veh/km

(c) Because density and flow are extensive quantities, i.e., they are lane additive. In
contrast, the speed is an intensive quantity which is not lane additive. Instead, the
lane-averaged speed is just the flow-weighted average of the speed on each lane.
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(d) With Qin = 4 000 veh/h, the inflow alone brings the main road to its maximum
capacity which, therefore, cannot accommodate the additional on-ramp vehicles, so,
a breakdown will occur in the merging region. Since prior to that, traffic is in the
free-flow branch of the FD with a common speed, so the information on the flow
surge travels at 108 km/h=30m/s. Thus, the surge reaches (the end of the) merging
region at time

tbd = 16:00 +
9 000m

30m/s
= 16:05.

(e) In Region 1a, we have free flow with a total flow equal to the new demand Qin:

Qtot
1a = 4 000 veh/h,

Q1a = Qtot
1a /2 = 2 000 veh/h,

ρ1a = Q1a/V0 = 18.5 veh/km,

ρtot1a = 2ρ1a = 37.0 veh/km

V1a = Q1a/ρ1a = V0 = 30m/s.

In Region 1b, we have a congested state (right-hand side of the FD) with a total
flow given by the outflow capacity minus the ramp demand (assuming that all ramp
vehicles can squeeze in):

Qtot
1b = 2Qmax −Qon = 3 820 veh/h,

Q1b = Qtot
1b /2 = 1 910 veh/h,

ρ1b = ρcong(Q1b) = 32.2 veh/km

ρtot1b = 2ρ1b = 64.3 veh/km

V1b = Q1b/ρ1b = 16.5m/s.

In Region 2, we have just the maximum flow state

Qtot
2 = 4 320 veh/h,

Q2 = Qtot
2 /2 = 2 160 veh/h,

ρ2 = Q2/V0 = 20 veh/km,

ρtot2 = 2ρ2 = 40 veh/km

V2 = Q2/ρ2 = V0 = 30m/s.

Watch out!

– First, determine whether a region is free or congested

– Then, calculate Qtot to be equal to the demand (free) or the bottleneck capacity
(congested)

– Then, get Q by dividing by the number of lanes

– Then, determine the (lane-averaged!) density by inverting the FD taking the
free (congested) branch for the free (congested) regions

– Calculate the speed by the hydrodynamic relation V = Q/ρ and the total
density by multiplying ρ with the number of lanes

– In all calculations, watch out for unit conversions (particularly, use the SI system
and the lane-averaged quantities for inverting the FD).
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(f) Shock-wave formula:

c =
Q1b −Q1a

ρ1b − ρ1a
= −1.83m/s = −6.6 km/h.
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