
Exam to the Lecture

Traffic Dynamics and Simulation

SS 2021
Solutions

Problem 1 (40 points)

(a) A time-continuous model.

(b) Free-flow acceleration parameters a: maximum acceleration (at zero speed), v0: de-
sired speed (free-flow acceleration is zero).

(c) Acceleration in the interaction regime: If smaller than the free-flow acceleration,
the driver responds to the leader (“car-following regime”), otherwise, the leader is
ignored (free-flow regime).

(d) In microscopic flow models, the fundamental diagram (FD) gives the homogeneous
( ∂
∂x

= 0) steady-state ( ∂
∂t

= 0) gap as a function of speed for identical vehicles
(which can be transformed into a macroscopic FD such as flow as a function of
density, afterwards). Homogeneous, i.e., no spatial changes, means same speed,
vl = v. Stationarity means no temporal changes at a certain location. Together
with homogeneity, this also means no changes in the moving frame of micromodels,
dv
dt

= 0.

(e) Sufficiently large gaps → the free-flow regime dv
dt

= a[1 − (v/v0))
4] is active: With

dv
dt

= 0, we have 0 = a[1− (v/v0))
4] or v = v0.

(f) The transition is abrupt because of the non-differentiable minimum function. In the
steady-state dv

dt
= 0, vl = v, we have at this transition

a

[

(1−
(

v

v0

)4
]

= a

[

1−
(

s0 + vT

s

)2
]

= 0

This means v = v0 and s = s0 + vT = s0 + v0T . s0: minimum gap at zero speed; T
constant time gap leading to an increase of the steady-state gap with the speed.

(g) For v < v0, there is no steady-state free flow, so the right term of the acceleration
equation applies: a[1− ((s0 + vT )/s)2] = 0 or s = s0 + vT .

(h) With l = 5m and s0 = 3m, the space headway (distance between the fronts of
identical vehicles) is ∆xmin = leff = 8m, and the maximum density

ρmax =
1

leff
=

1

s0 + l
= 125 km−1

(i) In the steady-state interaction regime s < s0 + v0T or ρ > ρc = 1/(l+ s0 + v0T ), we
have v(s) = (s − s0)/T or macroscopically with s = 1/ρ − l: V (ρ) = v(1/ρ − l) =
(1/ρ − l − s0)/T while in the free regime, we simply have V = v0. With the flow
Q = ρV , this leads to

Q(ρ) = ρV (ρ) =

{

V0ρ ρ ≤ ρc =
1

l+s0+v0T
1−ρ(l+s0)

T
ρ > ρc
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Unlike the FD of the “normal” IDM, this is the well-known tridiagonal fundamental
diagram.

(j) Red traffic light corresponds to a leading virtal vehicle at speed vl = 0. Approach
with v = v0, i.e.

dv
dt

= 0 sufficiently far away. The critical gap is reached if the inter-
acting part results in zero acceleration as well (with rapidly increasing deceleration
afterwards):

0 = a

[

1−
(

s∗

s

)2
]

or

s = s∗ = s0 + v0T +
v20

2
√
ab

This is the formula for the stopping distance (“Anhalteweg”) for a reaction time

equal to T and a constant braking deceleration equal to
√
ab (and equal to b, if

a = b)
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Problem 2 (40 points)

(a) In stationary situations ( ∂
∂t

= 0), the continuity equation parallel to the merging
region is given by

0 =
∂Qtot

∂x
=

Qrmp

Lrmp

, x ∈ [−Lrmp, 0]

A trivial integration gives

Qtot(x) =
Qrmp

Lrmp
x+ C

with the integration constant C determined by

Qtot(−Lrmp) = −Qrmp + C = Qin, ⇒ C = Qin +Qrmp

so

Qtot(x) = Qin +Qrmp

(

1 +
x

Lrmp

)

(and, more generally, Qtot = Qin for x < −Lrmp and Qtot = Qin +Qrmp for x ≥ 0)

(b) Critical density per lane:

ρc =
1

leff + v0T
=

1

50m
= 20 veh/km

Maximum flow per lane:

Qmax = V0ρc = 25m/s 0.02 veh/m = 0.5 veh/s = 1 800 veh/h

Capacity:
C = 2Qmax = 3 600 veh/h

(c) Watch out that the diagram should be drawn for the total density and flow, i.e.,
sum of both lanes:
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(d) Propagation velocities:
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– Free flow: wfree = v0 = 25m (not any interaction in free flow!)

– Congested: wcong = w = − leff
T

= −6.25m/s

(e) Mainroad capacity C = 3 600 veh/h, sum Qin + Qrmp = 3 400 veh/h is less than the
capacity ⇒ the traffic demand can be satisfied everywhere ⇒ no congestions appear
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(f) Notice: The original problem statement asked for an impossible inflow of 4 200 veh/h.
Therefore, this question and all the following dependent ones will not be evaluated.
Extra points are earned for those spotting this error.

With Qin = 3 400 veh/h, the sum of the inflow and the ramp flow exceeds capacity.
Consequently, a breakdown occurs as soon as the surge of the inflow has propagated
to the effective location x = 0 of the on-ramp (negligible ramp length). With
wfree = v0 = 25m/s. This surge propagates the given 6-kilometer distance at a time
of 6 000m/25m/s = 240 s = 4min. So, the breakdown occurs at the time 16:04 at
the location x = 0.1

(g) – Region I, free inflow:

Qtot
1 = Qin = 3 400 veh/h, rhotot1 =

Qin

V0

= 37.8 veh/km

– Region II, congestion: Here we need the inverted FD for the congested branch
which is always (!) given for the per-lane quantities: ρcong(Q) = 1−QT

T

Qtot
2 = C −Qrmp = 3 200 veh/h, rhotot2 = 2ρcong(Q

tot
2 /2) = 57.8 veh/km

This leads to a jam-front propagation velocity of

c12 =
Q2 −Q1

ρ2 − ρ1
=

Qtot
2 −Qtot

1

ρtot2 − ρtot1

= −2.778m/s = −10 km/h

1In reality, it takes some time if the excess demand accumulates a sufficient number of vehicles, so, in relaity,

the breakdown is somewhat later. However, this cannot be modelled with LWR models.
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(h) Between 16:04 und 17:00, the upstream congestion front propagates at 10 km/h, so
the maximum jam length is given by

xmax = −c12 ∗ 56 ∗ 60 s = 9.33 km

The maximum jam time is determined by the speed inside the congestion:

Tmax =
xmax

V2

=
xmaxρ

tot
2

Qtot
2

= 607 s

(i) With the new inflow Qtot
1 = 3 000 veh/H, rhotot1 = Qtot

1 /V 0 = 33.3 veh/km, we now
have

c12 =
Qtot

2 −Qtot
1

ρtot2 − ρtot1

= +2.27m/s

and hence a dissolution time of

Tmax =
xmax

c12
= 4 107 s

Although the excess supply of 200 veh/h after 17:00 corresponds to the excess de-
mand before, the dissolution time of more than 68min is longer than the buildup time
of 56min since, at dissolution time, we have less vehicles in the region x ∈ −xmax, 0]
than at breakdown time since the inflow density decreased from 37.8 veh/km to
33.3 veh/km. The excess time for the dissolution com[pared to the buildup just cor-
responds to the time of removing xmax ∗ 4.44 veh/km at a rate of the excess supply
of 200 veh/h.
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Problem 3 (25 points)

(a) A slow vehicle changes from another lane to the considered lane at time t = 0
and changes to a further (or the original) lane at 40 s effectively forming a moving
bottleneck in between.

(b) – Upstream region x < 0: ρ = 5/600 veh/m = 8.3 veh/km, Q = 5/20 veh/s =
900 veh/h, v = 600m/20 s = 30m/s = 108 km/h

– Congested region x < 0: Q = 7/20 veh/s = 1 260 veh/h, v = 10m/s = 36 km/h,
ρ = Q/V = 35 veh/km

– Outflow region x < 0: Q = 8/20 veh/s = 1440 veh/h, v = 30m/s = 108 km/h,
ρ = Q/V = 13.3 veh/km

(c) – Upstream jam front: cup ≈ 300m/70 s

– Downstream front jam-empty: cdown,1 = 10m/s (the speed of the moving bot-
tleneck)

– Downstream front jam-outflow: cdown,2 = −50m/40 s

Of course, all propagation velocities can also be calculated using the shock-wave
formula and the results of (b).

(d) Braking time Tbrake = 10 s, speed change: ∆v = 10m/s−30m/s. Hence, the braking
deceleration is given by

b = −
∆v

Tbrake

= 2m/s2

Problem 4 (15 points)

(a) Possible reasons for the observed scattering of the flow-density data in spite of iden-
tical drivers and vehicles:

1. Traffic flow instabilities

2. Bias in estimating the density via the flow divided by the time mean speed

(b) 1. Heterogeneities of the vehicle-driver population

2. Even one and the same driver does not drive “like a machine” and instead shows
all sorts of fluctuations in the driving style
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