Seite: 1 von 4

Name:	First name:	Matrikel number:

Exam to the Lecture Traffic Dynamics and Simulation SS 2021

Total 120 points

Problem 1 (40 points)

Given is following acceleration equation for a car-following model as a function of the gap s, the speed v, and the leader's speed v_l :

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \min\left\{a\left[1 - \left(\frac{v}{v_0}\right)^4\right], \ a\left[1 - \left(\frac{s}{s^*}\right)^4\right]\right\}, \quad s^* = s_0 + vT + \frac{v(v - v_l)}{\sqrt{2ab}}$$

- (a) Is this a time-continuous or a time-discrete car-following model?
- (b) Discuss, in a few words, the first term $a(1-(v/v_0))^4$ and give the meaning of the model parameters a and v_0 .
- (c) Discuss the second term $a(1-(s/s^*)^2)$.
- (d) When deriving the fundamental diagram (homogeneous steady-state relation), one has to set $\frac{dV}{dt} = 0$ and $v_l = v$. Why? Discuss by referring to the definition of the fundamental diagram.
- (e) Give the steady-state speed for sufficiently large gaps where no interaction occurs.
- (f) Show that, in the steady state, the transition from free traffic to the congested state is abrupt and at a gap $s_0 + v_0 T$. Discuss the model parameters s_0 and T
- (g) Give the steady-state gap as a function of the speed for speeds less than the desired speed.
- (h) Given is a traffic flow of identical drivers and vehicles of 5 m length. Give the maximum density for $s_0 = 3$ m
- (i) Give the fundamental diagram $Q_e(\rho)$ of this model. Assume a free-flow speed of v_0 and a steady-state gap $s_e(v) = s_0 + vT$ for speeds $v < v_0$.
- (i) A driver driving according to this model approaches a red traffic light at the free-flow speed. At which distance from the traffic light this driver begins to brake? Give the general result as a function of s_0 , v_0 , T, and b and identify this distance as the sum of the minimum gap, the distance covered during the reaction time, and the braking distance for a constant deceleration and associate the reaction time and the braking deceleration with model parameters.

Name:	First name:	Matrikel number:

Problem 2 (40 points)

Given is a freeway road section with an on-ramp merging to the main road effectively at the location x = 0 according to following sketch (no jammed region 2 at the beginning):

For the analysis, assume a macroscopic LWR model and a triangular fundamental diagram with the parameters

$$V_0 = 25 \,\mathrm{m/s}, \quad T = 1.6 \,\mathrm{s}, \quad \rho_{\mathrm{max}} = \frac{1}{l_{\mathrm{eff}}} = 0.1 \,\mathrm{m}^{-1}.$$

(a) Assuming a ramp of merging length $l_{\rm rmp}$, the continuity equation of this situation for the total density and flow (summed over both lanes) can be written as

$$\frac{\mathrm{d}\rho^{\mathrm{tot}}}{\mathrm{d}t} + \frac{\mathrm{d}Q^{\mathrm{tot}}}{\mathrm{d}x} = \begin{cases} \frac{Q_{\mathrm{rmp}}}{L_{\mathrm{rmp}}} & x \in [-L_{\mathrm{rmp}}, 0], \\ 0 & \text{otherwise.} \end{cases}$$

Calculate for stationary situations ($\frac{d}{dt} = 0$ but of course $\frac{d}{dx} \neq 0$ in the merging region) the total main flow $Q^{\text{tot}}(x)$ as a function of the constant total main inflow Q^{in} and the ramp flow Q_{rmp} .

- (b) Calculate the numerical values for the critical density ρ_c per lane at the free-congested transition, the maximum flow per lane, and the main-road capacity.
- (c) Draw the fundamental diagram for the total flows on the main road
- (d) Calculate the propagation velocity of small perturbations in free flow and in congested traffic.
- (e) The ramp flow is constant $Q_{\rm rmp} = 400 \, {\rm veh/h}$ and, at the beginning of the analysis, the main inflow $Q_{\rm in} = 3\,000 \, {\rm veh/h}$. Argue that these demands will not lead to a traffic breakdown (whatch out for the units!). Draw the total flows and densities of Region $\tilde{1}$ (upstream of the ramp) and Region 3 (downstream) into the fundamental diagram of Question (c).
- (f) At $16:00 \,\mathrm{h}$, the main inflow as observed by a stationary detector $6 \,\mathrm{km}$ upstream $(x=-6 \,\mathrm{km})$ suddenly increases from $3\,000 \,\mathrm{veh/h}$ to $4\,200 \,\mathrm{veh/h}$ while the ramp flow remains constant at $400 \,\mathrm{veh/h}$. Argue that this increase of the demand will lead to a breakdown. Determine the location and time of the breakdown. *Hints:* Here, you can assume a negligible ramp length. Watch out for the finite propagation velocity of flow changes in free flow.

Name:	First name:	Matrikel number:

- (g) Calculate the propagation velocity of the upstream front of the congestion resulting from the breakdown. Draw the traffic states of the Regions 1, 2, and 3 into the fundamental diagram of Question (c).
- (h) At 17:00 h, the traffic flow immediately upstream of the transition free \rightarrow jammed drops from 4200 veh/h to 2200 veh/h. Calculate the maximum length of the congestion and the loss of time for the most unhappy driver (arriving just at 17:00 h at the rear end of the congestion).
- (i) Calculate the time at which the congestion dissolves assuming no further demand changes after 17:00. Motivate why the dissolution takes a longer time than the buildup although the excess supply after 17:00 is equal to the excess demand before.

Problem 3 (25 points)

Given is following trajectory diagram for one lane of a freeway:

- (a) Which situation can lead to such trajectories? (Notice that the thick black line represents a vehicle as well).
- (b) Determine density, speed, and flow for the three regions
 - upstream, x < 0
 - congested region
 - outflow state ($t > 60 \,\mathrm{s}$ and $x > 600 \,\mathrm{m}$).
- (c) Determine the propagation velocities of the upstream and downstream transition zones of the congestion.
- (d) Estimate the braking deceleration (the braking phase is between the two red closed circles).

Seite: 4 von 4

Name:	First name:	Matrikel number:

Problem 4 (15 points)

Given is a flow-density scatter plot obtained from virtual stationary detectors of a microscopic traffic flow simulation (symbols) together with the fundamental diagram of the simulated model.

- (a) Obviously, the points of the scatter plot do not lie on the fundamental diagram although a deterministic micromodel with identical drivers and vehicles has been simulated. What are possible reasons?
- (b) Discuss further irregularities or stochastic elements of real traffic that may also lead to the observed scattering.