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Traffic Flow Dynamics 9a. Stability Analysis 9a.1 Motivation

9a.1 Motivation

I At time t = t0, the driver of car 1 brakes slightly (for whatever reason)

I As a result, the new optimal speed for car 2 is given by v1 as well. So the driver of this car
reduces the speed to v1 at time t1

I If traffic is sufficiently dense and/or the speed adaptation time is sufficiently long and/or
|V ′

e (s)| large, the gap s2(t1) < se(v1) ⇒ further deceleration to v2 < v1

I Car 3 approaches to a gap smaller than se(v2) ⇒ braking to v3 < v2

I The vicious circle eventually leads to full stops
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9a.2 Mathematical Classification

Instabilities can be classified according to

I Evolution over time: Absolutely stable, convectively string unstable, (absolutely)
string unstable, locally unstable

I Type of perturbation and endpoint: Small temporary perturbations remain small:
Ljapunov stability; small temporary perturbation tend to zero: asymptotic
stability; small persistent perturbations do not significantly change the system:
structural stability
For continuous many-vehicle microscopic or macroscopic systems, all three concepts
are equivalent to string stability which therefore can be investigated with temporary
extended perturbations (wave ansatz) or with permanent local perturbations (Laplace
approach)

I Amplitude of perturbation: linear vs nonlinear stability

I Instability of system vs numerical integration code: system vs numerical instability
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Evolution over time

Perturbation response uj(t) of follower j [take
index j because i will be the imaginary unit,
later on] at time t to an temporary perturba-
tion of leader j = 0 at x = 0 around time 0:

I Local stability:

lim
t→∞

uj(t) = 0 for all finite j.

I String stability of an infinite platoon

lim
t→∞

max
i

(uj(t)) = 0.

I (upstream) Convective string instability
for an infinite platoon: string unstable
but

lim
t→∞

uj(t) = 0, if x(t) ≤ 0
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Convective instability

Upstream convective instability Absolute convective instability
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9a.3 Local Stability: Analysis

Ansatz: perturbations from the steady-state (se(ve), ve) of a follower j = 1 following a
leader driving at constant speed ve

s1(t) = se + y(t),

v1(t) = ve + u(t).

Insert into a general car-following model v̇j = f(sj , vj , vj−1) ≡ f(s, v, vl) and linearize:

dy

dt
= ul − u = −u, (1)

du

dt
= fsy + fvu+ flul = fsy + fvu (2)

where (Taylor expansion of f(.) to first order)

f(s, v, vl) = f(se, ve, ve) + fsy + fvu+ flul + higher orders

I Steady state implies f(se, ve, ve) = 0

I Taylor coeffixcients are partial derivatives (acceleration sensitivities)

fs =
∂f

∂s

∣∣∣∣
e

, fv =
∂f

∂v

∣∣∣∣
e

, fl =
∂f

∂vl

∣∣∣∣
e
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The role of the acceleration sensitivities

I For model of the form v̇ = f(s, v, vl) with any number of parameters, the behaviour
near the steady state (ve, se(ve)) is uniquely characterized by the three sensitivities
fs, fv, and fl.

I Relation between sensities of a model of the form v̇ = f(s, v, vl) and the equivalent
form v̇ = f̃(s, v,∆v) with ∆v = v − vl approaching rate:

fs = f̃s, fv = f̃v + f̃∆v, fl = −f̃∆v,

f̃s = fs, f̃v = fv + fl, f̃∆v = −fl
(3)

Hint: often confusion whether ∆v = v − vl or = vl − v ⇒ use form v̇ = f(s, v, vl)

I Relation between the “microscopic” fundamental diagram ve(s) and the sensitivities:

v′e(s) = − f̃s
f̃v

= − fs
fv + fl

. (4)

How to derive? Homogeneous stationarity: f(s, ve(s), ve(s)) = 0 for all gaps s

⇒
(

df
ds

)
e

= fs + fvv′e + flv
′
e

!
= 0, hence v′e = −fs/(fv + fl)
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Local Stability: Results

Taking the time derivative of (1) and insert (2): ÿ = −u̇ = −fsy − fvu = −fsy + fv ẏ

d2y

dt2
− fv

dy

dt
+ fsy = 0

Write this as an harmonic oscillator:

d2y

dt2
+ 2η

dy(t)

dt
+ ω2

0y(t) = 0, η = −fv
2
, ω2

0 = fs

Ansatz y(t) = eλt gives

λ1/2 = −η ±
√
η2 − ω2

0 =
fv
2
±
√
f2
v

4
− fs

I Sufficient condition for local stability: fv < 0 AND fs ≥ 0: always satisfied if the
plausibility criteria are met

I Overdamped return to the steady state (no oscillations) if Im(λ) = 0 or fs ≤ f2
v
4
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9a.4.1 String Stability of Car-Following Models: Wave Approach

The linearisation is as for local stability, only that the leader is also dynamic → eqations
for follower j and leader j − 1 are coupled, recursively

I Ansatz

sj(t) = se + yj(t),

vj(t) = ve + uj(t).

I Linearize general car-following model defined by acceleration function
f(sj , vj , vl) = f(sj , vj , vj−1)
What do identical functions f(.) mean? identical vehicles and drivers

dyj
dt

= uj−1 − uj , (5)

duj
dt

= fsyj + fvuj + fluj−1 (6)
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Ansatz I: Linear waves in an infinite system
Fourier-Ansatz (

yj(t)
uj(t)

)
=

(
ŷ
û

)
eλt+ijk (7)

I imaginary unit i =
√
−1

I complex growth rate λ = σ + iω
. Real part σ: growth rate of the oscillation amplitude
. Imaginary part ω indicates the angular frequency from the perspective of the driver.

The driver passes a complete wave in the time 2π/ω

I wave number k ∈ [−π, π]: Phase shift from one vehicle to the next at given time. A
wave contains 2π/k vehicles

I Wave phase i(ωt+ kj), passing rate in the moving system −ω/k (negative sign since
phase φ = ωt+ kj = const.)

I Physical wavelength (se + l) 2π/k, physical wave speed in the stationary system
wphys = ve + (se + l) ω/k (Lagrangian part (se + l) ω/k < 0 since ω(k) < 0 for
k > 0: information travels backwards from follower to follower)

I Complex eigenvector (ŷ, û)′ defines amplitude and phase of the gap deviations
relative to the speed deviations
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Inserting the Fourier ansatz

Insert the traffic wave ansatz (7) into the linear system (5), Eq. (6):

L

(
ŷ
û

)
≡
(

λ 1− e−ik

−fs λ−
(
fv + fle

−ik
) ) · ( ŷ

û

)
= 0.

Nontrivial solutions (ŷ, û)′ 6= 0 to this homogeneous linear system only for a vanishing
determinant:

det L = 0 ⇒ λ2 + p(k)λ+ q(k) = 0 ⇒

λ1/2(k) = −p(k)

2

(
1±

√
1− 4q(k)

p2(k)

)
(8)

with

p(k) = −fv − fle−ik,

q(k) = fs

(
1− e−ik

)
.

(9)
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Selecting the slow and potentially unstable mode

Quadratic equation with complex coefficients→ not a priori clar which is the more
unstable mode with the higher Re(λ) ⇒ define

λ(k) =

{
λ1(k) Re(λ1(k)) ≥ Re(λ2(k))
λ2(k) otherwise.

σ(k) = Re(λ(k))

ω(k) = Im(λ(k))

IDM with variable parameter a and fixed
v0 = 120 km/h,
T = 1.5 s,
s0 = 2 m,
b = 1.3 m/s2.
Why does the vehicle length play no role?
Because the vehicle length does not enter the model equa-

tion (it is needed when transforming to a physical Eulerian

picture instead of a Lagrangian vehicle index picture)
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String stability criterion

A car-following model is string stable if σ(k) ≤ 0 for all relative phase shifts (wave
numbers) in the range k ∈ [−π, π] (or k ∈ [0, π] since σ(k) is even)

I For delay-free models the first instability is always a long-wavelength instability
(Proof: ⇒ Laplace approach) ⇒ sufficient stability criterion σ′′(0) < 0
Why the second derivative? σ(k) is even and continuous ⇒ σ′(0) = 0

I Taylor expansion (longer calculation):

λ =
i fs

fv + fl
k − fs

2(fv + fl)3

(
2fs + f2

l − f2
v

)
k2 +O(k3). (10)

I The linear coefficient is pureley imaginary and given by −iv′e(se) ⇒ the passing rate
(vehicles per time) of waves in the Lagrangian system is simply given by v′e(se)

I The quadratic coefficient is real. It is nonpositive (i.e., the system string stable) if

2fs − f2
v + f2

l ≤ 0 or 2f̃s − f̃2
v − 2f̃vf̃∆v ≤ 0 (11)

Why? The CF model plausibility criteria include fs ≥ 0 and fṽ = fv + fl < 0, so −fs/(fv + fl)
3 ≥ 0
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String stability: Alternative formulation and model example I: OVM/FVDM
With the already derived relationv′e(s) = −fs/(fv + fl) = −f̃s/f̃v, reformulate the string
stability criterion (11) as

v′e(se) ≤ 1
2 (fl − fv) String stability for v̇ = f(s, v, vl)

v′e(se) ≤ −
f̃v
2 − f̃∆v String stability for v̇ = f̃(s, v,∆v)

(12)

Try to understand these criteria intuitively

The major cause for instabilities, the change of steady-state speed with the gap, must be smaller than the stabilizing

terms on the rhs including the driver agility −fv or −f̃v and the sensitivity fl or −f̃∆v to the leader’s speed

OVM and FVDM:

I Acceleration equation:

f̃(s, v,∆v) = (ve(s)− v)/τ − γ∆v (with γ = 0 for the FVDM)

I Relevant sensitivities: f̃v = − 1
τ , f̃∆v = −γ

I Stability criterion: v′e(s) ≤ 1
2τ + γ: increased stability for increased agility 1/τ and

increased anticipation γ
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Model examples II: Gipps model stability condition

I Model equation:

f(s, v, vl) = = min

(
afree(v),

vsafe(s, v, vl)− v
τ

)
,

vsafe(s, v, vl) = −bτ +
√
b2τ2 + b [2(s− s0)− vτ + v2l /bl]

I Relevant sensitivities (set vsafe = ve for interacting traffic and
√
... = ve + bτ after

taking the derivatives)

fv = a′free(v0) < 0, fs = fl = 0 noninteracting, vsafe > v0

fv = − 2ve + 3bτ

2τ(ve + bτ)
, fl =

b

bl

ve
τ(ve + bτ)

interacting traffic
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Gipps model stability condition (ctnd)

I Gap sensitivity if interacting: v′e(se) = 1
s′e(ve)

= 2

3τ+
2ve(s)
b

(
1− b

bl

)
I String stability criterion: v′e(se) ≤ 1

2(fl − fv) =
2ve
(

1+ b
bl

)
+3bτ

4τ(ve+bτ)

I Simplification for bl = b: 2
3τ ≤

3
4τ

I For bl = b, string stability is always given

I If bl > b, the driver assumes a stronger
braking capability for the leader than to
him/herself making the driving more
defensive and string stability even more
pronounced

I If bl < b, followers are more reckless and
string instability sets in for a sufficient speed
ve < v0: Then, v′e(s) becomes very large
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Model examples III: IDM stability condition

f IDM(s, v, vl) = a

[
1−

(
v

v0

)δ
−
(
s∗

s

)2
]
, s∗ = s0 + vT +

v(v − vl)
2
√
ab

Because variations around the steady state are considered, the max condition for s∗ is not needed here

f IDM,free
v = −aδ

ve

(
ve
v0

)δ
,

f IDM,int
v = −

(s0 + veT )
(
2aT +

√
a
b ve
)

s2
e

,

f IDM
l =

√
a

b

(
(s0 + veT )ve

s2
e

)
se(v) =

s0 + vT√
1−

(
v
v0

)δ
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IDM stability condition (ctnd)

IDM stability condition v′e ≤ 1
2 (fl − fv): v′e(se) ≤ aδ

2ve

(
ve
v0

)δ
+ s0+veT

s2e

(
aT +

√
a
b ve
)

I Stability increases with agility a and
time gap T

I Stability also increases with
decreasing b corresponding to an
increased anticipation and decreasing
v0 and s0

I Simple expression for near standstill,
ve → 0, se → s0, s′e → 1/T , with a
(re-)stabilisation if

a ≥ s0
T 2

I Redo evaluating the stability criterion, this

time using the f̃ notation, v′e ≤
−f̃v

2
− f̃∆v
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IDM+ stability condition
Model equation:

f IDM+(s, v, vl) = min

[
a

(
1−

(
v

v0

))δ
,−a

(
s∗

s

)2
]
, s∗ = s0 + vT +

v(v − vl)
2
√
ab

I The free regime (the first term dominates the min-condition) is always stable

I For the interacting regime, we have the IDM sensitivities with the free part missing:

f IDM+
v = f IDM,int

v , f IDM+
s = f IDM

s , f IDM+
l = f IDM

l

I Hence, the IDM+ stability criterion is given by

v′e(se) ≤
s0 + veT

s2e

(
aT +

√
a

b
ve

)
It is equivalent to the IDM criterion for δ →∞

I The same parameter sensitivity analysis applies: IDM+ becomes more stable for increasing a
and T and decreasing b, v0, and s0
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9a.4.2 String Stability of Car-Following Models: Laplace Approach

Criterion Wave ansatz Laplace ansatz

System infinite or closed semi-infinite platoon

Perturbations, time temporary permanent

Perturbations, space extended localized to a single leader

System boundaries initial conditions
boundary conditions for
leader

Definition string
instability

temporally growing
perturbations

perturbations growing from
follower from follower

Advantages

analysis of convective
instability,

extendable to macroscopic
models

analytic identification
of the most unstable mode,

inclusion of lower-level
control/delays,

analysis of heterogeneous
traffic
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Laplace analysis
Start as in the wave approach with the linearized perturbations s = se + y, v = ve + u of
the CF model f(s, v, vl) ⇒ Eqs (5) and (6)

ẏj = uj−1 − uj ,
u̇j = fsyj + fvuj + fluj−1

Coupled equations for the speed deviations alone:

üj = fs(uj−1 − uj) + fvu̇j + flu̇l−1 (13)

Laplace Ansatz uj(t) = ûje
λt = ûje

iωt (Why λ is purely imaginary?) Laplace perturbations are

stationary and only increase from vehicle to vehicle gives complex transfer function

G(iω) =
ûj
ûj−1

=
ŷj
ŷj−1

=
λfl + fs

λ2 − λfv + fs
=

iωfl + fs
−ω2 − iωfv + fs

(14)

with G(0) = 1 Why?

For each harmonic component of the leader’s oscillation, the next follower responds
I with a phase shift arctan [Im(G(iω))/Re(G(iω))],
I and a growth factor |G(iω)|
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Instability and wavelength of most unstable mode
Squared absolute growth factor is a function of ω2:

|G(iω)|2 =
f2
s + f2

l ω
2

(fs − ω2)2 + f2
vω

2
:= G2

abs(ω
2) (15)

Necessary condition for the resonance frequency of the most unstable (most growing)
mode (lengthy calculation!):

dG2
abs

dω2

!
= 0 ⇒ ω2

res =
fs
f2
l

(
−fs +

√
f2
s + f2

l (f2
l − f2

v + 2fs)

)
I A maximum for real-valued ωres (i.e., ω2

res ≥ 0) only exists if f2l − f2v + 2fs > 0, i.e., if the
string instability criterion for the wave ansatz is satisfied

I Then we have also |G(ωres| > 1:

String instability is equivalent to at least some oscillations increasing from car to car

I Both the growth factor and the resonance frequency of the fastest growing mode increase
strictly monotonously with the string instability indicator f2l − f2v + 2fs.

I At neutral stability, the resonance frequency ωres of the maximum growth tends to zero
justifying the Taylor ansatz made earlier for the infinite system.
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Heterogeneous vehicle platoons
A finite heterogeneous platoon satisfies weak or head-to-tail string stability if the
absolute of the head-to-tail transfer function

|Gn1(iω)| =
∣∣∣∣ ûnû0

∣∣∣∣ =

n∏
j=1

|Gj(iω)| ≤ 1 ∀ω ≥ 0

Assume (as is the case for homogeneous strings) a first instability for ω → 0:

0 ≥
d

dω2

∏
j

|Gj(iω)|2

ω=0

ln(.) strictly monotonous
=

d

dω2
ln

∏
j

|Gj(iω)|2

ω=0

log rules
=

d

dω2

∑
j

ln |Gj(iω)|2

ω=0

chain rule
=

∑
j

1

|Gj(0)|2
d

dω2
|Gj(iω)|2ω=0

Gj(0)=1,Eq. (15)
=

∑
j

(
1

f2
js

)(
f2
jl − f

2
jv + 2fjs

)
,

I A heterogeneous string is
head-to-tail string stable if the
weighted arithmetic average of
the individual string stability
indicators
f2
jl − f2

jv + 2fjs weighted with

1/f2
js is nonpositive

I Necessary but not sufficient
(there may be
short-wavelength instabilities)
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Lower-level control and explicit time delays

I Lower-level control

. The CF acceleration is the commanded acceleration for the engine/motor controller

. The simplest model for the controller is a first-order lag (PT1-characteristic) returning
the physical acceleration:

daphys

dt
=
acmd(t)− aphys(t)

τa

Transfer function (as usual ansatz aphys = âphyse
λt, acmd = âcmde

λt):

H1(λ) =
âphys

âcmd
=

1

τaλ+ 1

I Explicit delay
daphys

dt
= aCF(t− τd), H2(λ) =

âphys

âCF
= e−τdλ
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Both control and delay together

daphys

dt
=

acmd(t− τd)− aphys(t− τd)
τa

,

H(λ) = H1(λ)H2(λ) =
e−τdλ

τaλ+ 1

I The transfer functions of several consectutive linear input-output elements can be
just multiplied together

I Consequently, the transfer function of one vehicle j including lower-level control and
a single global delay is given by Gj(λ)Hj(λ)

I This allows to analyze linear stability of complex systems such has heterogeneous
vehicles with individual lower-level controls and time delays: Head-to-tail transfer
function (with λ = iω)

Gn1(iω) =
ûn
û0

=

n∏
j=1

Gj(iω)Hj(iω)

. Gj(iω): linearized individual CF Models

. Gj(iω): individual lower-level controls and time delays (may also be different for
different input quantities)



Traffic Flow Dynamics 9a. Stability Analysis 9a.5 Flow Stability of Macroscopic Models

9a.5 Flow Stability of Macroscopic Models

I General second-order macromodel including local and nonlocal terms:

∂ρ
∂t + ∂(ρV )

∂x = D ∂2ρ
∂x2 ,

∂V
∂t + V ∂V

∂x = A (ρ, V, ρa, Va, ρx, Vx, ρxx, Vxx)
(16)

I Partial derivatives and nonlocalities:

ρx =
∂ρ(x, t)

∂x
, ρxx =

∂2ρ(x, t)

∂x2
, ρa(x, t) = ρ(xa, t) with xa > x.

I Partial speed derivatives Vx, Vxx and nonlocalities Va defined in analogy
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Steady state of the general macroscopic model

I Steady state: A (ρ, Ve(ρ), ρ, Ve(ρ), 0, 0, 0, 0) = 0

I Relation between V ′e (ρ) and the acceleration derivatives:

dA = (Aρ +Aρa) dρ + (AV +AVa)V ′e (ρ) dρ = 0

⇒

V ′e (ρ) = −Aρ +Aρa
Av +AVa

(17)

I Acceleration sensitivities:

Aρ =
∂A

∂ρ

∣∣∣∣
e

, Aρa =
∂A

∂ρa

∣∣∣∣
e

, Aρx =
∂A

∂ρx

∣∣∣∣
e

, Aρxx =
∂A

∂ρxx

∣∣∣∣
e

.

AV , AVa , AVx . AVxx in analogy
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Linearisation of the general macromodel

Ansatz

ρ(x, t) = ρe + ρ̃(x, t),

V (x, t) = Ve + Ṽ (x, t),

Linearisation of (16):

∂ρ̃

∂t
= −ρe

∂Ṽ

∂x
− Ve

∂ρ̃

∂x
+D

∂2ρ̃

∂x2
, (18)

∂Ṽ

∂t
= −Ve

∂Ṽ

∂x
+Aρρ̃+AV Ṽ +Aρa ρ̃a +AVa Ṽa

+Aρx
∂ρ̃

∂x
+AVx

∂Ṽ

∂x
+Aρxx

∂2ρ̃

∂x2
+AVxx

∂2Ṽ

∂x2
(19)

shortcuts ρ̃a(x, t) = ρ̃(xa, t) and Ṽa(x, t) = Ṽ (xa, t).
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Linearisation: wave ansatz
Wave ansatz (Fourier modes) as for the micromodel, only in the Eulerian instead of
Lagrangian frame of reference and in physical coordiates:(

ρ̃k(x, t)

Ṽk(x, t)

)
∝
(

ρ̂

V̂

)
eλt−ikx =

(
ρ̂

V̂

)
e(σ+iω)t−ikx

I Complex growth rate λ(k) = σ(k) + iω(k) Give the phase of the wave at (x, t)

φ = ω(k)t− kx
Give the condition for stability All waves k have a real part of the growth rate σ(k) = Reλ(k) ≤ 1

I Physical wavelength 2π/k, physical wavenumber k Compare with the physical

wavelength of micromodels There, k is the phase shift from vehicle to vehicle with vehicle distance

se + l, so physical wavelength 2π(se + l)/k

I With I lanes, a wave contains Iρe2π/k vehicles. How many vehicles does a single-lane

car-following wave have? 2π/k vehicles

I The points of constant phase φ = ωt− kx (e.g., the wave crests) move with the
velocity c̃(k) = ω/k in the stationary system. This has to be contrasted with the
physical propagation velocity c̃mic(k) = ve(se) + (se + l)ωk of microscopic waves in
the stationary system.
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Determining the waves
Wave ansatz into the linear system (18), (19) is only nontrivially solvable if the
eigenvalue condition is satisfied:

Det

(
ikVe −Dk2 − λ ikρe

Aρ +Aρae−iksa − ikAρx − k2Aρxx ikVe +AV +AVae−iksa − ikAVx − k2AVxx − λ

)
!
= 0

Quadratic equation for the complex growth rate: λ2 + p(k)λ+ q(k) = 0 Solution:

λ1/2 = −p
2
±
√
p2

4
− q = −p

2

(
1±

√
1− 4q

p2

)
with

p = p0 + p1k +O(k2), q = q1k + q2k
2 +O(k3)

and

p0 = −(AV +AVa
),

p1 = i(AVx
+ saAVa

− 2Ve),

q1 = iVe(AV +AVa
)− iρe(Aρ +Aρa) = −iQ′ep0,

q2 = Ve(AVx
+ saAVa

)− ρe(Aρx + saAρa)− V 2
e −D(AV +Ava)
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Longwave stability criterion

Taylor approximation of λ(k) around k = 0 (long-wavelength limit):

I Since q = O(k) while p! = 0 also for k → 0, the square root can be expanded to second order
in ε = 4q/p2 to ensure second order in k:

√
1− ε = 1− 1

2
ε− 1

8
ε2 +O(ε3)

I Since p0 is real and λ(k) should tend to zero for k → 0 instead of tending to −p0, the minus
sign selects the more unstable mode in the long-wavelength limit:

λ = −p
2

(
ε

2
+
ε2

8

)
+O(ε3)

q=O(k)
= −

(
q

p
+
q2

p3

)
+O(k3)

= −
(
q1
p0

)
k +

(
− q2
p0

+
q1p1
p20
− q21
p30

)
k2 +O(k3)

q1/p0=−iQ′
e= iQ′e(ρe)k +

(
−q2 − ip1Q′e(ρe) + (Q′e(ρe))

2

p0

)
k2 +O(k3)
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General result

I For k → 0, λ(k) tends to 0 which is alredy implied by vehicle number conservation

I The linear order in k is purely imaginary and determines the wave propagation with
the wave velocity

c =
ω

k
=

Imλ

k
= Q′e(ρe)

⇒ also the linear waves of second-order models obey the wave velocity formula of
the LWR models (this is no longer the case for larger k!)

I The quadratic order is purely real and determines string stability. Since
p0 = −(AV +AVa) is always < 0 for plausible models, we have the general
longwavelength stability criterion for all local and nonlocal models

(Q′e(ρe))
2 − ip1Q

′
e(ρe)− q2 ≤ 0 (20)
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Application to local and nonlocal models

I Local models (Aρa = 0, AVa = 0) after replacing Q′e = d
dρ(ρVe) = Ve + ρV ′e (many

terms cancel out!):

(ρeV
′
e )2 ≤ −ρe

(
V ′eAVx +Aρx

)
−DAV

Flow stability for
local macroscopic models.

(21)

I Special case that AVx = 0 and Aρx can be written as a differential

−1
ρ∂P/∂x = −1

ρP
′(ρe)

∂ρ
∂x = −1

ρP
′
e
∂ρ
∂x :

(ρeV
′
e )2 ≤ P ′e −DAV (22)

I Nonlocal models (no gradients except for the V ∂V
∂x and pressure terms):

(ρeV
′
e )2 ≤ P ′e − ρesa

(
V ′eAVa +Aρa

) Stability condition for
nonlocal macro-models.

(23)
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Discussion

I In contrast to microscopic models, the speed sensitivity AV alone does not influence
stability since it appears only in combination with the density diffusion D which is
zero, in most macroscopic models.

I Another surprising result: In spite of its obvious role to “smear out” gradients, the
speed diffusion term AVxx does not enter the stability criterion at all (while the
density diffusion, if it exists, does)

I Most remarkable:

Without gradients or nonlocalities, macroscopic models
are unconditionally unstable: Anticipation is absolutely
necessary

I Speed anticipations (−ρeV ′eAVx ≥ 0 and −ρesaV ′eAVa ≥ 0 for models fulfilling the
acceleration plausibility criteria) increase the rhs of the criteria and therefore acts, as
expected, stabilizing

I As expected, density anticipations (−ρeAρx ≥ 0 and −ρesaAρa ≥ 0) stabilize as well
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Example 1: flow stability for Payne’s model

Acceleration function A(x, t) = Ve(ρ)−V
τ + V ′e (ρ)

2ρτ
∂ρ
∂x

I We have D = 0 and the acceleration sensitivities Aρx = V ′e/(2ρτ), and AVx = 0

I Using (21), we obtain (watch out for the digns when multiplying both sides with
V ′e < 0!)

ρV ′e
2 ≤ −Aρx = − V ′e

2ρτ

−V ′e (ρ) = |V ′e (ρ)| ≤ 1

2ρ2τ

Derive this using (22) and the pressure term

. The anticipation term V ′e/(2ρτ) ∂ρ
∂x

can be written as the pressure gradient − 1
ρ
P ′(ρ) ∂ρ

∂x
, so

P ′(ρ) = −V ′e/(2τ) and (22) reads (ρeV ′e )2 ≤ −V ′e/(2τ) resulting in the same stability condition

I As expected, stability increases with decreasing destabilizing force (speed-density
sensitivity |V ′e |) and increasing agility (decreasing speed adaptation time τ). Specific
to this model, stability also increases for very high densities
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Example 2: flow stability for the GKT model
Acceleration function

A(x, t) = −1

ρ

∂P

∂x
+
V ∗e (ρ, V, ρa, Va)− V

τ
,

P (ρ) = ρσ2
V (ρ) := ρα(ρ)V 2

e (ρ),

V ∗e (ρ, V, ρa, Va) = V0

[
1− α(ρ)

α(ρmax)

(
ρaV T

1− ρa/ρmax

)2

B

(
V − Va

V
√

2α(ρ)

)]
I α(ρ): squared empirical speed variation coefficient σv/Ve,
I “Boltzmann factor” B(x) with B(0) = 1 and B′(0) = 2

√
2/π

I Va = V (xa) with anticipation distance sa = xa − x = γ(leff + V0T ) with leff = 1/ρmax, anticipation factor γ
I Avoid numerical relaxation instabilities for ρ near ρmax comming from the stiffness of the model for this

situation: set (for a given update time ∆t) τ → (ρ) = max(τ,∆t(1 + 2V0/Ve)

I Nonlocal model with acceleration sensitivities (replace the α(ρ)/α(ρmax) terms with
multiples of (V0 − V ∗e ))

Aρa = −2(V0 − Ve)ρmax

τρe(ρmax − ρe)

Ava =
2(V0 − Ve)
τVe
√
απ



Traffic Flow Dynamics 9a. Stability Analysis 9a.5 Flow Stability of Macroscopic Models

Flow stability for the GKT model (ctnd)

I Resulting stability criterion(
ρeV

′
e

)2 ≤ P ′e(ρ) +
2γ(leff + VeT )(V0 − Ve)

τ

[
ρmax

ρmax − ρe
− ρeV

′
e

Ve
√
απ

]
I GKT stability...

. increases with γ characterizing the level of anticipation,

. increases with the driver’s agility 1/τ ,

. increases with increasing desired time gap T , i.e., reducing the aggressiveness,

. and increases with the sensitivity to speed differences which is characterized by α−1/2.

I Restabilisation limit for ρ→ ρmax (with Ve ≈ 1
T (1

ρ −
1

ρmax
), ρV ′e ≈ − 1

Tρ)

γ >
τVe

2TV0

[
1 + (αmaxπ)−1/2

]
or with τ = ∆t(1 + 2V0/Ve) ≈ 2∆tV0/Ve

γ >
∆t

T
[
1 + (αmaxπ)−1/2

]
⇒ Restabilisation occurs for any sensible parameter set!
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GKT instability

Instability indicator (ρeV
′
e )2 − P ′e(ρ)− 2γ(leff+VeT )(V0−Ve)

τ

[
ρmax

ρmax−ρe −
ρeV

′
e

Ve
√
απ

]
freeway

V0 = 120 km/h
T = 1.2 s

ρmax = 160 /km
τ0 = 20 s
γ = 1.2

∆t = 0.4 s

city

V0 = 50 km/h
τ0 = 8 s



Traffic Flow Dynamics 9a. Stability Analysis 9a.6 Convective Instability

9a.6 Convective Instability

Convective (string) instability means that, while growing (Reλ(k) > 0 for some k or
|G(iω)| > 1 for some ω), the waves are convected away after some time. After a localized initial
perturbation U(x, 0) = U0(x), the amplitude U(x, t) satisfies

I Maximum maxx U(x, t) grows over time after some transients (string instability)

I Amplitude limt→∞ U(x, t)→ 0 for x ≥ 0 (upstream convective instability) or x ≤ 0
(downstream convective instability). Directions for traffic flow? Mainly upstream but

theoretically, donstream convective instability is possible as well for low densities and very unstable flows
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Convective instability for microscopic models

Convective instability is always defined in the stationary Eulerian reference frame for
physical dimensions. For microscopic models in the linear regime, this means

I Physical wavenumber kphys(k) = ρek = k/(lveh + se)

I Physical frequency at a constant location ωphys(k) = veρek+ Im λ(k) Recapitulate the

meaning of the wavenumber k in micromodels in terms of the number of vehicles in a wave

2π/k vehicles in a wave, physical wavelength (lveh + se)2π/k
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Analytical approach

I Start from a homogeneous steady state (ρe, Ve) (without loss of generality macroscopic)

I Expand the dispersion relation (complex growthrate λ(k)) not around the wavenumber
k = 0 of the first instability but around the wavenumber k0 of maximum growthrate
k0 = arg(maxkRe λ(k)) Why is, beyond the limit of string instability, the fastest growing mode never the

first unstable mode k → 0? Because it follows from vehicle conservation that waves with a wavelength→∞ can never grow nor shrink

in amplitude, σ → 0 for k → 0

I Start with “perfectly” localized inititial perturbation (e.g., the speed perturbation)

U(x, 0) = δ(x), δ(x) = 0 ∀x 6= 0,

∫ ∞
−∞

δ(x) = 1
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Principle of the calculation

I The initial speed is Fourier-transformed in space. Since the Fourier transform of the
δ-distribution is =1 for all wavenumbers k, we have complex Fourier modes (chose
the slow mode with the higher growth rate Re λ)

Ũk(x, t) = eλ(k)t−ikx

I An inverse Fourier transform (summing up over all the modes) gives the complex
speed perturbation for any x and t

Ũ(x, t) =

∫ ∞
k=−∞

Ũk(x, t) dk

I In order to be analytically tractable, λ(k) is expanded around k0 giving complex
Gaussian integrals which can be solved (but lengthy calculations)



Traffic Flow Dynamics 9a. Stability Analysis 9a.6 Convective Instability

Result

U(x, t) = Re(Ũ(x, t)) (24)

Ũ(x, t) ∝ exp
[
i(kphys

0 x− ω0t)
]

exp

[(
σ0 −

(
vg − x

t

)2
2(iωkk − σkk)

)
t

]
(25)

Quantity Microscopic models Macroscopic models

kphys
0 ρek0 = ρearg max

k
Reλ(k) k0 = arg max

k
Reλ(k)

σ0 Re λ(k0) Re λ(k0)

ω0 veρek0 + Im λ(k0) Im λ(k0)

vg ve + Im λ′(k0)/ρe Im λ′(k0)

σkk Re λ′′(k0)/ρ2
e Re λ′′(k0),

ωkk Im λ′′(k0)/ρ2
e Im λ′′(k0).
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Signal velocities and the limits of the convective instability

I Evaluate the growth rate of (24) along the ray x = cst corresponding to a signal
velocity cs:

σ(c) = σ0 − Re

(
(vg − c)2

2(iωkk − σkk)

)
= σ0 −

(
(vg − c)2

2D2

)
with

D2 = −σkk
(

1 +
ω2
kk

σ2
kk

)
(How to calculate?) 1/D2 = Re(1/(iωkk − σkk)) = −σkk/(σ2

kk + ω2
kk) = −1/(σkk(1 + ω2

kk/σ
2
kk))
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Signal velocities and the limits of the convective instability (ctnd)

I U(x, t) = Re(Ũ(x, t)) grows in a range of rays bounded by the signal velocities

σ(cs)
def
= 0 ⇒ c±s = vg ±

√
2D2σ0

I At the limit between convective and absolute instability, one signal velocity is =0, so

σ0 =
v2
g

2D2
. The other limit is any string instability, so

Convective instability ⇐⇒ 0 < σ0 ≤
v2
g

2D2
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“Reallity check” by simulation (IDM)
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