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Chapter 16
Stability Analysis

Mathematics is the key and door to the sciences. Galileo Galilei

Abstract Second-order macroscopic models and most car-following models are
able to reproduce traffic waves or other observed instabilities of traffic flow. Af-
ter an intuitive introduction, we define the relevant stability concepts such as lo-
cal instability, convective and absolute string and flow instability, or Ljapunov and
asymptotic stability. We give general analytic criteria for the occurrence of these
instabilities for microscopic and macroscopic models. For microscopic models, we
compare the approaches via Fourier analysis and transfer functions. The formula-
tion is more comprehensive than the various accounts in the specialized literature
and can be evaluated for any traffic flow model with a well-defined acceleration
function, and also for models with explicit time delays or considering several vehi-
cles ahead (multi-anticipation) or one in the back. The stability criteria allow us to
characterize the influencing factors of traffic flow instabilities and answer the ques-
tion of if, and in which way, the driving behavior (or advanced driver-assistance
systems) influence traffic flow stability.

16.1 Formation of Stop-and-Go Waves

Instabilities of traffic flow resulting in traffic waves, also termed stop-and-go waves,
are caused by the delays in adapting the speed to the actual traffic conditions. These
delays are the consequence of finite acceleration and braking capabilities, and also
result from finite reaction times of the drivers. If traffic density is sufficiently high,
this delay leads to a positive feedback on density and speed perturbations We
will now intuitively explain this vicious circle with the help of Fig. [16.1] (see also
Fig.[16.8):

! Generally, delays in a feedback control system favor instabilities. This can be experienced intu-
itively when taking a shower and controlling the water temperature, particularly, if the response
time between the controlling action and the result (a change of the water temperature) is rather
long.
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Fig. 16.1 The vicious circle: In order to regain the safety gap, the driver of every following vehicle
needs to brake harder than his or her predecessor. The numbers beside the vehicles denote the
vehicle index.

The scenario starts with a platoon of cars initially in steady-state equilibrium at
speed v,. At time ¢ = fo, the driver of car 1 brakes slightly (for whatever reason)
and continues driving at a slightly lower speed vi < v,.

As a result, the new optimal speed for car 2 is given by v; as well. So the driver
of this car reduces his or her speed from v, to v; in a finite time interval ending
at time 7.

If traffic is sufficiently dense, or if the speed adaptation time is sufficiently long,
the gap of car 2 at time #; is smaller than the steady-state gap s,(v1) at the speed
of the leading car 1. In order to regain his or her desired gap, the driver of car 2
has to brake more, i.e., he or she decelerates temporarily to a speed v, < v in
the time interval between #; and #,. The degree of this overreaction increases
with the sensitivity to changes of the gap which is given by |v.(s)| and V/(p) for
microscopic and macroscopic models, respectively.

Since the driver of the next car 3 also needs some time to adapt the speed, the
gap between car 2 and car 3 may become smaller than the steady-state gap s.(v2).
Therefore, the driver of car 3 decelerates further to a minimum speed v3 < v, at
time 7.

This positive feedback continues when going to the next car 4 which has to stop
completely (time #3).

The resulting traffic wave dissolves only if the number of new vehicles approach-
ing the wave from behind decreases.

As a result, a stop-and-go wave emerges “out of thin air” giving rise to the name
phantom jam for this phenomenon (see also Section and the right diagram of
Fig. [[6.11). At sufficiently low traffic density, or when traffic consists predomi-
nantly of agile drivers, the vicious circle is broken. In this case, the drivers have
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already equilibrated their speed to the new situation at the time where a new vehi-
cle comes within interaction distance, so the stop-and-go mechanism is not effec-
tive. As a result, all drivers following car 1 decelerate to v; but not further (see the
left diagram of Fig. [I6.11] for an example). From the qualitative consideration, it
follows that the stop-and-go mechanism is never effective in models describing in-
stantaneous speed adaptations and zero reaction times as in first-order macroscopic
models (LWR models), or in Newell’s microscopic model. As a result, density per-
turbations never grow in such models, so they cannot describe traffic instabilities

In summary, the qualitative argumentation suggests that the tendency to traffic
flow instabilities increases with

* increasing speed adaptation time,
* increasing traffic density,
* and increasing sensitivity |V, (s)| or V/(p) for changes of the gap.

The stability analysis expounded below agrees with this reasoningﬁ

16.2 Mathematical Classification of Traffic Flow Instabilities

We emphasize that all types of instabilities discussed in this chapter describe a ten-
dency to oscillations, traffic waves, stop-and-go traffic and the like. However, they
do not correspond to accidents (which would be characterized by negative gaps or
densities exceeding the maximum density pmax in the microscopic and macroscopic
descriptions, respectively). Generally, simulated accidents only occur if the insta-
bility thresholds are exceeded extremely. However, in some models representing
“short-sighted” drivers (such as the OVM), accidents may happen even for parame-
ters corresponding to perfectly stable traffic.

Moreover, the physical instabilities of real traffic discussed below have to be
distinguished from numerical instabilities. The latter result from integration steps
being too large, or by applying an unsuitable numerical update method (see Sec-
tions and [[1.3] for details). In contrast, real traffic instabilities are the conse-
quence of physical delays due to finite accelerations and reaction times

2 The only way to generate a traffic breakdown in such models is by simulating a bottleneck
and assuming upstream boundary conditions corresponding to an inflow exceeding the bottleneck
capacity. Then, as soon as the flow at the bottleneck exceeds its capacity, the density immediately
upstream of the bottleneck jumps to the congested branch of the fundamental diagram at a flow
corresponding to the bottleneck capacity (cf. Section [0.6).

3 Notice that, in some models, the speed adaptation time may depend on traffic density getting
shorter for increased density. This can more than compensate for the destabilizing effects of traf-
fic density itself, so congested traffic may be unstable for most densities but restabilize for high
densities near the maximum.

4 In particular, both physical and numerical instabilities include so-called convective instabilities
which are discussed in the Sections[10.3]and[[6.6] respectively. Convective physical and numerical
instabilities have no commonalities, whatsoever.
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Fig. 16.2 Schematic sketch of the different instability concepts in terms of speed time series of
single vehicles: If traffic flow is convectively string unstable, perturbations grow but propagate
only upstream. Consequently, all vehicles drive smoothly at the time they pass the location of the
initial perturbation (indicated by the thin black line). If traffic flow is absolutely string unstable, the
perturbation eventually spreads everywhere but any given vehicle eventually drives smoothly, i.e., it
can follow a vehicle with predetermined trajectory without sustained oscillations (platoon stability)
In the presence of local instabilities or platoon instabilities, even following a single vehicle leads
to sustained oscillations.

In the following, we distinguish categories of traffic instabilities depending on
criteria for their existence and the type of resulting congestion pattern.

Evolution in time or over vehicles: local versus string instability. Local insta-
bility relates to the car-following dynamics of a single or a few vehicles following
a leader with a predetermined trajectory (typically introducing a perturbation by a
temporary speed drop or fluctuation while driving at constant speed for the rest of
the time).

To define local stability, we require that the leader j = W5 only introduces per-
turbations for times ¢ < #p < oo, i.e., the deviation ug(f) from the final steady state

3 To avoid confusions with the imaginary unit i needed later on, we will denote the vehicle index
as j throughout this chapter.
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satisfies u(t) = 0 for r > 1y while generally u;(r) # O for all followers j > 08 Then,
this system is (asymptotically) locally stable, if the gap and speed fluctuations of any
given follower eventually decay to zero for t — co. Otherwise, it is locally unstable

(cf. Fig.16:2)[1
In mathematical terms, a platoon of n followers is (asymptotically) locally stable
if the deviations u;(r) of any follower j = 1,...,n satisfy
tlimuj(f)zo if up(t) =0 for all > 1. (16.1)
—yo0

Since this definition refers to a (finite) platoon of followers, one also speaks of pla-
toon (in)stability. Notice that this definition does not exclude cases where fluctua-
tions may temporarily increase from follower to follower as illustrated by the second
set of trajectories of Fig. [16.2] (convectively string unstable but locally stable): The
maximum perturbation amplitude increases from follower 1 to 2 to 3 but eventually,
all perturbations decay to zero. The trajectories of Fig. [16.4] show another example
of this situation. Later on, we will mathematically describe such an increase by the
absolute value of the transfer function (16.71)).

Obviously, this stability concept is only applicable for microscopic models. For
practical purposes, it is relevant when developing the feedback controllers of ACC
systemsﬁp

In contrast, the ubiquitous traffic waves are the result of string instability. In
defining string instability, we consider how an infinitely long vehicle platoon on an
infinite homogeneous road responds to a local and temporary perturbation. Traffic
flow is (asymptotically) string stable if such a perturbation eventually decays every-
where:

lim max (u;(r)) = 0. (16.2)
t—oo j
Otherwise, it is string unstable.

We emphasize that the definitions (I6.1) and (16.2)) for local and string stability
only differ if the system is infinite or if it is closed (ring road). Mathematically
speaking, only local stability is well defined in open finite systems, i.e., in real-world
road networks. Does this mean that string instability is irrelevant in open systems?
Not necessarily since (i) even for a temporary initial perturbation of the leader, the
definition of local stability allows for a temporary growth of perturbations which is
excluded if the system is string stable, (ii) for practical purposes, a string of a few
hundred vehicles is sufficient to generate traffic waves, i.e., it represents already a

6 In general dynamic systems texts, stability types are typically defined in terms of a system re-
sponse to initial conditions with the system left to its own devices, afterwards. However, in the
driven open systems considered here, a nontrivial steady state implies a leader with a fixed trajec-
tory at all times. Therefore, we adapted the definitions correspondingly.

7 It may also be Ljapunov stable, i.e., the perturbations remain limited. However, this type of
stability does not play a role in this context, see also page 3321

8 At least, if the penetration level of ACC equipped vehicles is sufficiently small. Otherwise, the
influence of ACC-driven vehicles on the string instability becomes relevant as will be discussed in
the main text below.
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good approximation of an “infinite” systemE (iii) when considering the response
to sustained (rather than temporary) perturbations of a leader, string stability rather
than local stability determines whether perturbations grow when propagating from
follower to follower as will be shown in Sect. [16.4.3]below.

Considering the responses to sustained perturbations of a leader in open systems
and heterogeneous vehicles, three categories of string stabilities are distinguished:

* Head-to-tail string stability: The last follower of a finite heterogeneous platoon
shows smaller perturbations than the leader although perturbations may grow
from vehicle to vehicle in between.

» Strict string stability: Perturbations always decrease from follower to follower.

* Asymptotic string stability: string stability of an infinite or closed system, i.e.,
string stability in the stricter sense.

Furthermore, a string instability can be of a convective or absolute nature, see
page below.

As illustrated by Fig. string stability is a much more restrictive concept
compared to local stability: Traffic flow may be string unstable even if speed fluc-
tuations within a vehicle platoon of finite size decay quickly, or even if there are no
local oscillations at all. An example of this latter case is given in the two sketched
situations in the middle of Fig.[I6.2] in the simulations of Fig. and particularly
in Problem [16.3] This has immediate practical implications for developers of ACC
controllers: Even if the ACC is optimized to be perfectly free of oscillations when
following a “test hare vehicle” driving a prescribed speed profile, traffic flow mainly
consisting of such ACC vehicles may be absolutely string unstable.

Since string instability is defined in terms of a collective phenomenon, it can be
applied to both microscopic and macroscopic models. To emphasize its macroscopic
nature, one also speaks of collective instability, or flow insmbility

Types of perturbation and asymptotic state: Ljapunov, asymptotic and struc-
tural stability. If we require that any sort of sufficiently small initial perturbations
remain small forever, we speak of Ljapunov stability. If we additionally require that
sufficiently small perturbations tend to zero for t — oo, the system is asymptotically
stable. If we allow not only initial perturbations but also small persistent fluctua-
tions and all trajectories remain close to the unperturbed trajectories, the system is
structurally stable. These stability concepts are mainly used by mathematiciand']

9 For a driver driving through stop-and-go traffic, it is little consolidation that the perturbations will
decay in the limit  — oo.

10 Some authors stress that there is a conceptual difference between string instability (relevant for
microscopic models), and flow instability (macroscopic models). However, observed differences
are merely a consequence of an imperfect equivalence between microscopic and macroscopic mod-
els with respect to macroscopic phenomena (notice that microscopic models can describe macro-
scopic phenomena but not vice versa). The unified instability criteria to be developed in the next
sections show that the concepts of string and flow instability are identical in a precisely defined
sense: For each microscopic model displaying string instabilities in a subset of the space spanned
by the model parameters and the steady-state traffic density, there exists a micro-macro relation to
a macroscopic model displaying flow instability for exactly the same subset.

1 'We do not give the precise mathematical definitions.
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and apply to arbitrary dynamical systems. For the traffic flow models with smooth
acceleration functions considered here, Ljapunov and asymptotic stability are equiv-
alent concepts Since Ljapunov and asymptotic stability are defined in terms of
sufficiently small but otherwise arbitrary initial and asymptotic perturbations, these
concepts refer to linear string (or flow) stability when applied to traffic flow models.
When explicitly defining the latter in Eq. (I6.4), we refer to asymptotic rather than

Ljapunov stability, i.e., we require that all small perturbations have negative growth
rates, i.e., they tend to zero.

Amplitude of perturbation: linear versus nonlinear instability. If arbitrarily
small perturbations increase in the course of time, one speaks of linear instabil-
ity. If small perturbations decay but sufficiently severe perturbations (caused, e.g.,
by hard braking maneuvers or inconsiderate lane changes) develop to persistent traf-
fic waves, this corresponds to nonlinear instability. As illustrated in Fig. [16.3] car-
following models or second-order macroscopic models generally have parameter
ranges where, for a certain range of steady-state densities, traffic flow is linearly
stable and simultaneously nonlinearly unstable, i.e., small perturbations decay and
larger ones develop to stop-and-go waves. This is termed metastability. As a con-
sequence of this type of instability, the future dynamics depends not only on the
present and future exogenous conditions but also on the past — for arbitrarily long
times. For example, given the same traffic demand profile, there may be growing
regions of congested traffic (a traffic breakdown occurred in the past), or completely

free traffic (no breakdown in the past). This dependence on the past (‘“path depen-
dence”) is also called hysteresis .

A maximum perturbation
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Fig. 16.3 Sequence of stability types as a function of the inherent tendency to instabilities (hori-
zontal axis) and the amplitude of the initial perturbation. The string instability is convective in the
limit of reaching the boundary to stability, and absolute at the boundary of local instability.

12 The distinction may become relevant for models with non-smooth or even non-continuous accel-
eration functions. Typically, this is the case when the model formulation involves several distinct

traffic regimes (e.g., Gipps’ model or the Wiedemann model). Such models may be Ljapunov but
not asymptotically stable.
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In order that a perturbation can develop to a persistent jam, the outflow from the
congested region must be smaller than the inflow, i.e., the bottleneck capacity under
congested conditions (also known as active or activated bottleneck) must be smaller
than the maximum possible flow through the bottleneck under free-flow conditions
(static capacity). Observed values for the difference between the static and dynamic
capacities, the so-called capacity drop, are of the order of 10% (cf. Chapter B.3).
Consequently, the fundamental diagram is not unique for densities in the metastable
range. Instead, there are two values for the flow, a higher one for free traffic, and a
lower one for congested traffic. For the graph of the fundamental diagram, this leads
to the characteristic shape of a mirrored Greek A, also referred to as the inverse
lambda shape[J cf. Fig. and 317

Formally, we define linear and nonlinear string instability in macroscopic terms
by considering an infinite system initially in steady state at density p, and looking
at the spatiotemporal development of the response U (x,) of a temporary and local-
ized perturbation Ug(x,0) of amplitude € denoting, e.g., the difference between the
actual and steady-state local speed fields. If the initial perturbation corresponds to
a sudden change € of speed of a single vehicle located at x = 0, the macroscopic
initial perturbation Ug (x,0) of the speed field is

e if |x|<2T1)e’ £>0, x€IR,

Ug (x,0) = Ug(x) = {0 (16.3)

otherwise.

This means, the speed field is changed by € in a region whose width Ax = 1/p, cor-
responds to the distance between two vehicles, i.e., to the effective space attributed
to one vehicle. Traffic flow is linearly unstable if

tlim maxU(x,7) >0 forall € > 0. (16.4)
—o0 X

It is nonlinearly unstable or metastable, if there exists a minimum perturbation am-
plitude &,; > 0 such that

lim max U (x,t) = (16.5)

f—oo X

Up>0 ife> gy,
0 if € €[0,&y].

As illustrated in Fig. the limit between linear instability and metastability is
defined by &, — 0, while the limit between metastability and absolute stability is
given by Eq. (I6.3) for the limit of a maximum perturbation, e.g., || =V (braking
to a complete stop)

Propagation of the perturbation: absolute versus convective instability. If traf-
fic flow is (linearly or nonlinearly) string unstable, the region of perturbations as
considered from a stationary observer can propagate in both directions (absolute

13 Although this is not correct: The Greek A is mirrored and not upside down.

14 To make the perturbation more massive, the duration of the perturbation must be increased such
that it results in a fully-formed initial jam.
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string instability), or exclusively upstream or downstream which is termed upstream
and downstream convective instability, respectively (see Fig.[16.4).
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Fig. 16.4 Visualization of the spatiotemporal evolution of (a) convective upstream string instabil-
ity, and (b) absolute string instability by vehicle trajectories in a space-time plot. Shown are IDM
simulations with / = 5m, vo = 120km/h, so =2m, and b = 1.5 m/s2, T = 1.5s, and acceleration
parameters a = 1.1m/ s?and a = 0.9 m/ s for the plots (a) and (b), respectively. Shown are the
trajectories of every 20th vehicle.

Convective instabilities were originally observed in open systems of fluid flows
such as water in pipes. In this case, the convective instability is of the downstream
type: perturbations leave the system together with the fluid after some time, i.e., they
are convected out of the system

In traffic flow, however, one observes that perturbations generally grow against
the driving direction and leave the system, i.e., the road section under consideration,
by the upstream boundary. Of course, this is particularly true for stop-and-go traffic
waves moving backwards at a constant velocity (cf. Section 21.3). We emphasize
that this propagation direction is not obvious: While the asymmetric interactions
of drivers (reacting essentially to the leading and hardly to the following vehicle)
ensure that, when considering a system comoving with the drivers, string instability
is always of the upstream convective typeld (cf. Figs.[[6.4(a) and [[&.1T) both types
of convective instability are theoretically plausible in the fixed system. In fact, both
types can be reproduced in simulations. However, downstream convective instability
is not robust against nonlinear effects (cf. Fig. [[6.3), so only upstream convective
instability is actually observed.

The distinction between convective and absolute instability is relevant since traf-
fic flow relates to an open system where absolute and convective instability leads to
qualitatively different congestion patterns:

o If traffic flow is absolutely string unstable, the perturbed region will sooner or
later cover the whole road section under consideration.

15 This technical term originates from the Latin convehi: to move together.
16 At least, if traffic flow is locally stable which is safe to assume.
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Fig. 16.5 Speed response functions for the initial localized perturbation (I6&3). Shown are IDM
simulations of (a) convective instability propagating upstream, (b) linear convective instability
propagating downstream which is destroyed by nonlinearities, and of (c) the limit between con-
vective and absolute instability.

o If traffic flow is convectively string unstable, the perturbations eventually will
leave the system. Thus, in a given section, oscillations resulting from temporary
perturbations are not persistent even in the presence of linear instability. If there
are persistent local perturbations (e.g., lane changes near ramps or lane closures),
the oscillations are, of course, persistent as well. However, they are small near
the location of the perturbations (generally at a bottleneck), and increase in am-
plitude further upstream. All this is markedly different in closed systems (ring
roads) where there is no qualitative long-term difference between these stability

types.

Convective instability is a widespread phenomenon. For example, all oscillations
and traffic waves on the German highway AS (Fig. are the consequence of con-
vective instability driven by persistent perturbations near the bottlenecks. In con-
trast, city traffic flow generally is stable and stop-and-go conditions are the trivial
consequence of the operations of traffic lights. In Section[16.6] we show that string
instability always starts as a convective instability (cf. Fig.[6.3)). From a multitude
of observations, we conclude the following:

The vast majority of all instabilities of highway traffic flow is of the convective
type.

Formally, one can define convective instability in terms of the dynamics of the
perturbation field U(x,7) for a given localized and temporary initial perturbation
Ug(x) according to Eq. (I6.3): Homogeneous flow is convectively unstable with
respect to this perturbation, if

limmax U (x,7) >0 and tle U(0,t)=0. (16.6)

t—o X
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The first condition is true if traffic flow is (linearly or nonlinearly) string unstable,
i.e., the initial perturbation does not decay to zero, at least somewhere in the system.
The second condition states that the perturbations eventually vanish at the location
of the initial triggering point

By analogy one can define absolute string instability by requiring the first condi-
tion to be true, and the second to be false. By suitably combining these conditions
with Eq. (I6.3), one can define in a straightforward way convective and absolute
linear instability and metastability (nonlinear instability).

Stability in stochastic models. We can determine the behavior in the presence
of acceleration noise or other fluctuations described by stochastic models from the
above definitions of convective and nonlinear instability:

 If the noise is of sufficiently low amplitude to allow a linear analysis, we obtain
persistent fluctuations for any type of linear string or flow instability. In contrast,
if a deterministic model describes convectively unstable traffic flow in open sys-
tems, all initial perturbations are eventually convected out of the system. This
means, small fluctuations change the qualitative behavior in such systems while
they have not much influence, otherwise.

» If the noise is of sufficient amplitude to warrant a nonlinear description, it can
trigger nonlinear instabilities. This means, larger-amplitude noise can change the
qualitative system behavior with respect to the deterministic description if the
system is convectively or absolutely metastable.

Wavelength of the perturbations. Since traffic flow represents an extended sys-
tem which can be abstracted to an infinitely long homogeneous road, there is,
in principle, an infinite multitude of perturbations leading to instabilities. In Sec-
tion [T6.4] we show, that the perturbations can be arranged in two branches or
“modes” of periodic perturbations with arbitrary real-valued wavelengths. However,
we can only observe the perturbations becoming first unstable when increasing the
traffic density (or making the model more unstable): Once nonlinearities become
effective (saturation, capacity drop, reversal of the propagation velocity), all other
perturbations are suppressed.

Depending on the nature of the onset of the “first” instability, we distinguish two
categories: In the presence of short-wavelength instabilities, the first instability has a
finite and typically short wavelength of only a few vehicle distances, i.e., each wave
consists of only a few vehicles. In contrast, if there is a long-wavelength instability,
the wavelength of the “first” unstable perturbation tends to infinity. Since vehicle
conservation implies that the growth rate tends to zero when the wavelength tends
to infinity regardless of the degree of (in-)stability, the practically observed waves
originating from long-wavelength instabilities, i.e., the perturbations with maximum
growth rate, are large but finite (of the order of 1 km or more). Mathematicians have
shown that instabilities are always of the long-wavelength type

* for continuous-in-time car-following models containing no explicit reaction time
(such as the OVM or the IDM)

17 More generally, the perturbations eventually vanish at any fixed location x for r — oo,
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 for second-order local macroscopic models such as Payne’s model or the Kerner-
Konhéuser model.

In contrast, the instability may be (but need not to be) of the short-wavelength type
if

* time is discrete (iterated maps, e.g., Gipps’ model),
¢ explicit reaction times are modeled (HDM, cf. Section[13.2)),
 or nonlocal macroscopic models (such as the GKT model) are considered.

This means, the first instability may be of the short-wavelength type if the model
contains some nonlocalities in space or time. Since observed instabilities are always
of the long-wavelength type, one can restrict the further analysis to this category.
Conversely, if one observes short-wavelength instabilities in the simulationslﬁ this
must be considered as an artifact of the model, or the consequence of an erroneous
(or erroneously parameterized) numerical integration method.

16.3 Local Stability

We consider a situation where a leading vehicle drives at constant speed and inves-
tigate small changes y(¢) and u(¢) of the gap and speed of a single follower with
respect to the steady-state equilibrium:

s(t) = se+y(1), (16.7)
v(t) = ve+ult). (16.8)

When analyzing local stability, it is essential that the leading vehicle does not exhibit
persistent perturbations since the question whether persistent perturbations are am-
plified when transferred to the following vehicles refers to string instability. Further-
more, instead of considering an initial perturbation of the leader, we can investigate
an unperturbed leader and an initial perturbation of the follower as specified above.
Inserting this ansatz into the general formulation (I1.3), (I1.6) of time-continuous
models, we obtain, in zeroth order of the perturbations (y = u = 0), the steady-state
conditions

f(se,ve,ve) =0 and  f(se,ve,0) =0 (16.9)

for the two forms f and f of the acceleration function, respectively (cf. Sec-
tion [[1.4). These conditions define the microscopic fundamental diagram in terms
of the steady-state gap s, for a certain constant speed v, which can be written as
ve(se) (steady-state speed for a given gap), or s.(v.) (steady-state gap for a given
speed).

In first order of the perturbations y and u of the follower, we obtain, for mod-
els defined by the acceleration function f, the following system of ordinary linear

18 For example, Gipps’ model in its original formulation exhibits a short-wavelength instability
with the smallest possible wavelength of two car distances.
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differential equations:

d
d% =w—u=—u, (16.10)
du

T fsy+ fou+ fi = foy+ fou (16.11)

Notice that the assumed constant speed of the leading vehicle implies u; = 0. The
coefficients fs, f,, and f; of the linearization originate from a first-order Taylor ex-
pansion of the acceleration function f with respect to its three independent variables
around the steady-state equilibrium,

F(s,v,v) = f(Se,Ve,ve) + fsy+ fou+ fiu; + higher orders (16.12)

with, by definition, f(s.,ve,v.) = 0 and the expansion coefficients

of

_9f _of
_81/,

T ds

o

s =5

Jo fi (16.13)

) ) M
e e e

The subscript e denotes that the derivatives are evaluated at the steady-state point
s=Sscand v=v; = v,(se).

By virtue of condition (I16.9) describing a one-dimensional manifold of steady-
state solutions v, (s), the three Taylor coefficients are not independent of each other.
Moving along the space of steady-state solutions by simultaneously changing s and
v = v; must not change the acceleration (which is always zero), i.e.,

fidse + (fo + f1) dve = fidse + (fy + f1) Vi (se)dse = 0 (16.14)
resulting in
/ _ f?
V,(se) = = (16.15)

Expanding the general acceleration equation (I1.3) for the alternative accelera-
tion function f(s,v,Av) to first order leads to the linear system

d
d% ST u= (16.16)
d 7 rd rd rd ~ ~ ~

di; = fov+ (A4 Fav) u— Favis = foy+ (Fo + fav) u. (16.17)

with the Taylor expansion coefficients

o 9f
) Av*aAv

e

o7

fi=5s (16.18)

ea fv:ai e-

Comparing Eq. (1I6.11) with Eq. (16.17), it is evident that one needs to consider
only one formulation of the acceleration function which we chose to be f(s,v,v;).
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Formulations for the alternative acceleration function f(s,v,Av) can be obtained
from that for f by the following set of replacements

fi=F f=h+Fa fi=—Fan (16.19)

This is valid for all expressions in this chapter, including these for string instabil-
ity. As an example, when applying the replacement rules to the steady-state condi-
tion (I6.13), we obtain following relation for the microscopic fundamental diagram:

v/(s):—éz— fs .
‘ L hAth

(16.20)

16.3.1 Single Leader-Follower Pair

Equations (I6.10) and (T6.10)) describe a harmonic damped oscillator. To see this
explicitly, we write them as a single second-order differential equation by taking the

time derivative of Eq. (I6.10) and inserting Eq. (I16.11)),

d%y dy(r) |
o2 1 =0. 16.21
dt2 +21 dr + w()y( ) ( )

The damping constant 1 and the angular oscillation frequency @y are given by

g o+ Fav ;
0= _fE _ _w’ 0= f=F. (16.22)

Assuming the exponential ansatz
y = yoet (16.23)
we arrive at the quadratic equation
A2 42nA + @i =0 (16.24)
for the (generally complex) growth rate A = ¢ +i® (i = /—1 is the imaginary unit)

with the solutions
Aijp=-nty/n*— . (16.25)

The dynamics of the follower is locally stable if both solutions decay, i.e., the real
parts are negative, 6}/, = Re(4; ;) < 0. This is satisfied if 7 > 0, or, with the defi-
nitions (16.22))

19 We emphasize that we have defined the relative speed Av = v — v; as the approaching rate. Some
publications define it as the negative approaching rate which means that all signs of Av and f,, are
swapped.
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<0 or fi+fa <0 Local stability. (16.26)

Since, by virtue of condition (12.1)), f,, < O for all plausible models, we conclude that
time-continuous car-following models without additional delay by explicit reaction
times are unconditionally locally stable.

As a more restrictive condition on the local behavior, we can require that all
deviations from the steady-state decay are without oscillations, not even damped
ones. This is the case if the imaginary parts of the growth rates are zero leading to
wg <n?, or f; < f2/4. Expressing f; by the sensitivity v/,(s) to changes of the gap,
we obtain the following no-oscillation conditions (cf. the left column of Fig.[16.6)):

~ PN
fv2 / _fv fAV . .
fi < 7o Vi (s) < ) 1+ = No local oscillations. (16.27)
v

Here, the transformation rules (I6.19) and (16.20) have been applied to arrive at the
second condition for models given in terms of the acceleration function f(s,v,Av).
In summary, we can make the following statements on local instability:

e Since f, < 0 for all sensible models and the above considerations are valid for
time-continuous car-following models without explicit reaction-time delay, such
models are always locally stable. However, this need not to be the case for iter-
ated maps (Gipps’ Model), or when considering explicit reaction times by delay-
differential equation as in the HDM.

» The more restrictive no-oscillation or overdamped oscillator condition (16.27)) is
not always satisfied. For example, we obtain for the Optimal Velocity Mode]

the condition |
Vi, (s)ovm < i (16.28)

This condition is more restrictive as the condition v, (s)ovm < 1/(27) for string
stability to be derived in the following section. As can be seen by the derivation,
this relation between the thresholds of over-damped local stability and string sta-
bility is valid for any car-following model without sensitivity to speed differences
that is formulated by ordinary differential equations.

* Near the threshold to string instability, the oscillations of a single vehicle when
approaching the local steady state are hardly recognizable (cf. right column of
Fig.[16.6). Reasoning in the converse direction, we conclude that when a vehicle
driving with adaptive cruise control shows recognizable oscillations, it is nearly
certain that traffic flow consisting of such vehicles is string unstable, even if the
oscillations of the single vehicle are strongly damped. Considering models with
the speed difference as exogenous factor, the model may even be completely
free of oscillations in the local context, and simultaneously string unstable when
considering traffic flow with many vehicles (cf. Problem[16.3).

20 The partial derivatives of the acceleration function are f, = —1/7, f; =0, f; = —V.(s) f,.
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Fig. 16.6 Response of an OVM vehicle to a speed reduction of the leading vehicle (driving a
fixed speed profile) from 72km/h to 54 km/h. Left: At the limit of an oscillation-free response
(v, = 1571, 7= 0.255). Right: Limit of string instability (v, = 1s~!, T = 0.55).

16.3.2 More Than One Follower

For reasons of simplicity, the derivation above was restricted to a single follower, for
example, a car with adaptive cruise control (ACC) following another car. The ques-
tion arises if the condition for local stability changes when considering more than
one follower. To investigate this case, we need to consider the full linearized equa-
tions for vehicle j including the leading vehicle j — 1. Assuming identical vehicles
and drivers, we generalize the system (16.10), (I6.11) to

dy;
kTR (16.29)
duj
T fsyj+ fouj+ fiuj—1. (16.30)

Now we differentiate (16.30) and apply (16.29) to the right-hand side of the resulting
equation to obtain a coupled differential equation solely in u; and u;_1,

d?u; d7u;

dr?

dyj+ du; duj 1 duj duJ 1

=fs fvi“"f _fs(uj—l )+fv +hi—

For each vehicle j, this is an inhomogeneous second-order linear ordinary differen-
tial equation with the respective leader acting as the inhomogeneity:

2
(;2 fr— +fs> (fz +fs)u,-_1 (16.31)

The same differential equation is also valid for the gap deviations y;. According to
the definition (I6.1) of local stability, the perturbation of the leader ug(r) = 0 for
all ¢ > ty. For the first follower j = 1, this means that, for t > #,, (I6.31) reverts to
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a homogeneous differential equation which, in fact, is equivalent to (I6&.21). This
means that u; (¢) decays to zero if the local stability criterion (I6.26) is satisfied.
Applying this reasoning recursively to the next followers, we find that u(r) = 0 for
t — oo as long as is valid and j remains finite:

The criterion (16.26) for local stability is valid for any finite number of fol-
lowers.

16.3.3 Models with Delay

In contrast to time-continuous models of the form (T1.3) as discussed above, time-
continuous models with delay, i.e., delay-differential equations of the form (I3.1)
modeling a finite reaction time, or time-discrete models (iterated maps) of the
form (II.7) may become locally unstable. Performing the same stability analysis
as above for models of the form (I3.1)), i.e., models whose acceleration equation is
of the form $v(r+T,) = f(s(t),v(t),Av()), we obtain

A e M (2nA+@f) =0. (16.32)

In spite of its simple appearance, solving this equation for the growth rate A =
0 + 1@ is nontrivial and can be done only numerically. For sufficiently high delay
times (more than 2.0's for the IDM with the highway parameters of Table [12.2),
the real part ¢ of the most unstable solution becomes positive for some steady-state
situations, i.e., the model becomes locally unstable (Fig.[16.7).
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Fig. 16.7 Left: The two branches of the linear growth rate A = ¢ +i® according to Eq.
for the conventional IDM with the standard highway parameters of Table[I2.2]as a function of the
steady-state speed. Right: Most unstable branch of the solutions to Eq. for the IDM with
an additional delay by the reaction time 7, = 2.0s (no other human driver properties added).
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16.4 String Stability of Car-Following Models

Even if a system consisting of a single or a few vehicles following a leader with
a fixed speed profile is well within the stable range, the oscillations may increase
with each following vehicle, i.e., traffic flow is string unstable (cf. Figs.
and[16.3).
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Fig. 16.8 Interactive simulation of stop-and-go waves with the Intelligent Driver Model (IDM) on
the authors’ website https://traffic-simulation.del

Generally, the resulting oscillations or waves have a wavelength of 1 km or more,
i.e., a single wave contains many vehicles corresponding to a long-wavelength insta-
bility This is fortunate since it allows compact analytical expressions for the stability
thresholds of time-continuous car-following models and macroscopic models.

16.4.1 String Stability Criteria

We start with the general formulation (T1.3), (I1.6) of time-continuous car-following
models without delay and without multi-anticipation. Furthermore, we consider
identical driver-vehicles on a homogeneous infinite road, i.e., the same acceleration
functions and identical parameter sets for all vehicles. The set of coupled equations
for the gap s; and the speed v; reads


https://traffic-simulation.de
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d .
z%c:VFlfyh (16.33)
d .
e ACGRYORISI) (16.34)

As in the analysis for local instability, we assume, for all vehicles j, small deviations
y; and u; from the steady-state gap s, and speed v,, respectively,

sj=s.+y,(t), (16.35)
v = ve+u;(1). (16.36)

In zeroth order with respect to y; and u;, we obtain the same result as for the lo-
cal analysis: The microscopic fundamental diagram v, (s) and the relations (T6.13)),
({16.19) and remain valid.

In first order, we obtain the following system of coupled linear differential equa-
tions with constant coefficients:

dy;
;ﬂi =uj_—uj (16.37)
duj
E;=ﬁw+ﬂw+ﬁw47 (16.38)

where the partial derivatives fs, f,, and f; are given by (16.13). Formally, this is
the same set as and (16.30). However, we now consider these equations
as an infinite coupled set with initial perturbations everywhere rather than a finite
sequence of differential equations with a temporary perturbation of a single leader,
only. The appropriate approach is therefore the Fourier-Ansatz

G)-Qs

corresponding to linear waves of strict periodicity whose Fourier amplitudes $(k)
and (k) are determined by the initial perturbations. This ansatz contains the fol-
lowing elements:

+ i=+/—1 is the imaginary unit.

e A =0 +iw is the complex growth rate. The real part o denotes the growth rate
of the oscillation amplitude while the imaginary part @ indicates the angular
frequency from the perspective of the driver. The driver passes a complete wave
in the time 27r/a)

* The dimensionless wave number k € [—m, 7] indicates the phase shift of the traf-
fic waves from one vehicle to the next at a given time instant. Consequently, the
number of vehicles per wave is given by 27 /k. Since the steady-state distance

21 Since  is defined with respect to the vehicle index which is increasing for decreasing x, we
have defined the imaginary part of the wave exponent to be @t + kj rather than the conventional
ansatz @t — kj. Thus, @t + kj corresponds to @pact — kx, see Eq. below and both @ and
Wnmac are generally negative reflecting waves travelling upstream.
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between the front bumpers of two vehicles is equal to s, + = 1/p,, the physical
wavelength is given by (s, + )27 /k.

* The phase velocity is defined by the movement of points of constant phase, i.e.,
by a constant imaginary part @ + jk of the exponent of Eq. (16.39). This gives
rise to following quantities:

— The passing rate
0}

j=-7 (16.40)

denotes the vehicle flux through the waves in a coordinate system moving
with the waves i.e., with points of constant phase wr + jk. Since w(k) <0
for k > 0, the passing rate is positive: The waves propagate in the direction of
increasing vehicle indices, i.e., opposite to the movement of the vehicles.

— In physical space, the relative propagation velocity in the system comoving
with the vehicles is given byl

(O] (0]

Cre1(k) = (se+1) K ok

(16.41)
— In the fixed system of a stationary observer at the road side, the positive
steady-state speed of the vehicles has to be added to the negative relative ve-

locity,
¢(k) = ve(se) + Crei (k). (16.42)

This road-based propagation velocity is the one that can be derived from traffic
data. In order to be consistent with observations, the long-wavelength limit
¢ = limy_, &(k) should be of the order of —15km/h, in congested situations.

* The traffic waves include periodic changes of both gap and speed. The fraction
ii/9 of the prefactors indicates the relation between the respective amplitudes.
For example, a traffic wave described by & = 0 would consist of gap changes,
only.

Inserting the fraffic wave ansatz (16.39) in the linear system (16.37), Eq. (16.38)

results in A "
1—e™ oA
<_fs 2 (fv+fle‘ik)> (12) =0. (16.43)

This linear-homogeneous 2 x 2 system for the amplitudes has only nontrivial solu-
tions if the determinant of the matrix of coefficients is equal to zero. The resulting
solvability condition assumes the form of a quadratic equation

A2+ p()A+q(k) =0 (16.44)

for the complex growth rate A with solutions given by (cf. Fig.

22 This technical term has to be distinguished from passing in the sense of overtaking which is
completely unrelated.

23 Since the vehicle index is decreasing for increasing x, the sign is reversed with respect to
Eq. (T640). With @/k < 0, the waves propagate upstream, i.€., in negative x direction.
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M (k) = —@ (1 +./1- j’;’gg ) (16.45)

where
Pl =—f=fie”™ (16.46)
gk) = f, (1 —e*ik) . '

Typically, one solution is fast decaying (Re A is strongly negative) while the other,
also called the “slow mode”, decays more slowly, or even grows. Only the latter is
relevant for investigating string stability. We therefore define the complex, real, and
imaginary growth rate of the slow mode as follows:

S T
o (k) = Re(A(k)) (16.48)
o(k) = Im(A(k)) (16.49)

For a given phase shift k between two consecutive vehicles, the actual solution
(9,#) of the slow mode (the eigenvector) gives the amplitudes and the phases of the
gap and speed oscillations. Since the eigenvector is only defined up to a (complex)
common factor, it essentially gives the relation of the amplitudes and the relative
phase between the speed and gap oscillations.

We can now define string stability:

A car-following model is string stable (a macroscopic model is flow stable) if
o (k) < 0 for all relative phase shifts (wave numbers) in the range k € [— 7, 7].

Furthermore, we distinguish the type of instability as follows:

When making the model more unstable by changing a control parameter (e.g.,
the acceleration parameter a) the emerging string instability (o (k) > 0) is of
the long-wavelength type if it arises at kK — 0. If the first instability appears at
a finite phase shift (wave number) ko, it is of the short-wavelength type.

In Sect. we will prove that the first instability of time-continuous models
without delay times is always of the long-wavelength type. Since only waves of a
finite wavelength can have finite growth rates, the resulting wavelengths are finite
but consist of many vehicles and the onset of instability is very slow. We illustrate
this by Figure The middle curve corresponds to a maximum of the growth
rate at ko =~ 0.13 corresponding to 27 /ko ~= 50 vehicles per wave, in agreement with
observations of real traffic waves.
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Fig. 16.9 Linear growth rate o (k) of a congested steady state (v, = 48km/h, v, /vy = 0.4) accord-
ing to (I6.48) for the Intelligent Driver Model (IDM) as a function of the scaled wave number
(phase shift) & for three values of the IDM acceleration parameter a. The remaining IDM parame-
ters are vo = 120km/h, T = 1.5s, 5o =2m, b = 1.3m/s2, and the vehicle length is / = 5m.

Restricting the further investigations to wave numbers |k| < 7, we expand the
coefficients of the quadratic equation for A (k) in a Taylor series around k = o

p(k) = po+ prk+ O(K?),

) 3 (16.50)
q(k) = qik+qok” + O(k”),
with

Po = _(fv+ﬁ) = _.fw
pl = l.fl = _ifAV)
q1 =ifs =ifs =iv(se)po, (16.51)
q = é = é = Lé(se)p

T2 y 10

The prefactors pg and g, are real-valued while p; and g; are purely imaginary.
Notice that the expressions for ¢; and g, on the right-hand sides of the last equal
sign follow from Eq. and Eq. (I6.20). Since there are no zero-order terms of
g(k), and the general criteria for sensible microscopic models imply that py = —f,,
is strictly positive, the real part of A can (in lowest order) become positive only for
the solution with the negative sign of the square root of Eq. (I6.47). Expanding this
solution around k = 0 to quadratic order making use of the expansion

11
Vi—eg= 1—§£—§82+ﬁ(83) (16.52)

for complex-valued €, we arrive at the general expression

24 The “order” symbol &(-) defines how fast the symbolized contributions converge to zero.
Specifically, if a contribution f(k) is of the order &'(k¥), then limy_,ok~7f(k) is finite, and
limy_,0 k"¢ f(k) = 0 for any positive real-valued .
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2
A = —Dpt (6111271 _%2_ ql) 24 o0d), (16.53)
Po Po Po Dy

which is also valid for the second-order macroscopic models to be discussed below.
A long-wavelength string instability is characterized by a positive (always real)
second-order coefficient of the more unstable solution A (k),

22
G//(O) _ )‘//(0) _ pPoq1p1 2700]2 q1 ) (1654)
Py

So a necessary (and for homogeneous traffic flow without reaction times sufficient)
string stability criterion is given by a nonpositive value of this coefficient. Because
the general plausibility criteria (Sect. [2.1) imply po > 0, the general criterion for
string stability (and macroscopic flow stability) can be expressed as

Poq1P1 —p%qz — q% < 0 String stability. (16.55)

Inserting the expansion coefficients (I6.31)) in terms of the sensitivities f, f,,
and f; of time-continuous microscopic models into Eq. (16.33) gives

ve(se) 1
frt+fi 12

The growth rate A tends to zero for k = 0. This is a direct consequence of the conti-
nuity equation. By virtue of the conservation of the number of vehicles, traffic waves
of infinite wavelength (or wave number k = 0) cannot dissolve since there is simply
no way for the vehicles to leave the wave.

The contribution linear in k is purely imaginary and therefore describes the prop-
agation properties of the waves for small phase shifts between consecutive vehicles.
Since we have set A = ¢ +iw, we have @ = —V,(s.)k+ €(k*) and arrive at the fol-
lowing simple expression for the relative (Lagrangian) propagation velocity (16.41)
of the traffic waves:

A =—ivl(s.) k+ (fi—f) = Va(se) | K2+ O (k). (16.56)

a)

o= (5 + 1)V, (se) + O(K?). (16.57)

Cre1(k) = (50 +1)
Notice that, in this equation, the acceleration function of the model enters only in-
directly via the gradient v,(s) = —f;/f, = —fs/(f, + fi) of the microscopic funda-
mental diagram v, (s). Since v; (s) > 0 and, consequently, ¢ < 0, the waves prop-
agate against the direction of the flow, at least in the coordinate system comoving
with the drivers. This is plausible since the considered class of car-following models
represents drivers reacting only to the leading but not to the following vehicle. In
the limit of completely interaction-free traffic corresponding to v, = vy, v.(s) = 0,
we have ¢, = 0, i.e., the waves move with the vehicles. In fact, the waves can be
interpreted as independently moving vehicle clusters, in this limiting case.
The second-order contribution of the growth rate is purely real, and there-
fore describes the growth properties of the waves. In particular, traffic flow is long-
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wavelength string stable if this term is negative. Inserting into (16.55)) the expansion
coefficients (I6.31)) results in the following criterion for string stability:

vi(se) < = (fi—f,) String stability for v; = f(s,v,v/). (16.58)

1
2

For models whose acceleration function is of the form ~(s,v,Av), we apply the
replacements (16.19) and obtain the alternative conditio

v (se) < —% — fay  String stability for v = f(s,v,Av). (16.59)

Formulation in terms of linear sensitivities alone. Since many publications give
the string stability in terms of the linear sensitivities of the microscopic model alone,
we will also provide them here, for reference. Replacing v, (s, ) with the sensitivities
using gives the alternative criteria

2f,— 24+ 17 <0, (16.60)
2fs— fF—2ffav < 0. (16.61)

Discussion. The above criteria for string stability directly point to the three main
factors determining the stability of traffic flow with respect to collective perturba-
tions. It is most convenient to extract these factors from the formulation (16.39).

Firstly, a necessary condition for string instability is a sufficient sensitivity
v, (s) > 0 to changes of the gap (left-hand side of Eq. (16.39)): Without this sen-
sitivity, there is no feedback, and the instability mechanism discussed qualitatively
in Section would break down already in the first step. The drivers simply ig-
nore the vehicles in front of them. Since this is a plausible behavior for low traffic
densities, only, it explains why a minimum traffic flux and density is necessary for
generating traffic flow instabilities.

Secondly, string instability implies that the sensitivity —f,/2 > 0 to speed
changes, i.e., the first term of the right-hand side of Eq. remains below a
certain threshold v, (s,) + fav. In terms of the driver’s behavior this means that re-
sponsive or agile drivers corresponding to high values of — f, tend to suppress string
instabilities.

Thirdly, string instabilities are only possible if the sensitivity — f4, to speed dif-
ferences remains below a certain threshold. In agreement with common sense, driv-
ers without any sensitivity to speed differences drive very short-sightedly and tend
to make traffic flow more unstable. Since future gaps can be estimated by speed
differences, one can conclude that — f4,, describes a simple form of anticipation.

In summary, the stability analysis shows that the factors favoring string insta-
bility are (i) sufficiently dense or congested traffic, (ii) drivers with little agility,

25 We reiterate that there are two conventions for the relative speed Av. If it is defined as Av =v; —v
instead of the approaching rate Av = v — vy, the signs of f4, reverse while the conditions (16.58)
and (I6.60) are unchanged.
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and (iii) a driving style characterized by little anticipation. This observation can be
used as a starting point for increasing traffic flow stability by driver-assistance sys-
tems (cf. Section 23.4)), or for formulating rules for effective driving to be taught
in driving schools. Even if stop-and-go conditions prevail, anticipative drivers (or
suitable ACC systems) react earlier to braking maneuvers of the preceding vehicles
than their more short-sighted peers thereby reducing the inflow to the traffic waves.
Moreover, responsive and anticipative drivers (or ACC-driven vehicles) leave traffic
waves faster than their more sluggish and short-sighted contemporaries. With less
inflow and more outflow, even existing traffic waves eventually will dissolve.

Interactive simulations. All three factors of string instability can be interac-
tively simulated at the authors’ website?q using the ring-road scenario depicted in
Fig. In the default setting, traffic flow is unstable and traffic waves emerge
after some time. These waves can be suppressed by each of the following actions:

* Reducing the “average density” via the top scrollbar. This reduces the overall
interactions and thus the positive destabilizing feedback characterized by v, (s).

* Increasing the “acceleration a” by controlling the corresponding scrollbar. This
makes the drivers more agile and corresponds to increasing the sensitivity — f,
(see also Fig.[16.9).

* Decreasing the (comfortable) “deceleration »”. Since one needs to react earlier
in order to reduce decelerations, this corresponds to increasing the level of antic-
ipation — fy,.

The latter two actions can also be applied to the other simulation scenarios.

16.4.2 Extension to Multi-Anticipation

When modeling human drivers (Chapter [13)) or adaptive-cruise control (ACC) with
communication to other vehicles (cooperative ACC, CACC), the driving response
does not only depend on the immediate leader but extends to the next-nearest leaders
further ahead. Since information in vehicle platoons generally travels backwards
looking further ahead gains valuable time to respond to new situations. Here, we
analyze to which extent this will stabilize traffic flow.

Generalized form of multi-anticipative models. In contrast to car-following mod-
els in the stricter sense, it is more efficient to formulate general multi-anticipative
models in terms of position differences rather than gaps. Since, regarding stability,
we can set all vehicle lengths equal to zero[28 both representations are equivalent if
we replace the independent variables “positional differences” by the sum of all gaps

26 see: |https://traffic-simulation.de

27 Since we are in the moving-observer (Lagrangian) perspective, this even applies to noncongested
traffic.

28 The vehicle itself is just a rigid body without internal dynamic effects through which the infor-
mation propagates instantaneously.
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(cf. Eq. (I3.11D). Since microscopic stability and the growth rate, e.g., Eq. (16.47),
is formulated in terms of the phase shift or scaled wavenumber k, the vehicle length
enters only when transforming the scaled wavenumber to a physical wave num-
ber via kppys = (S¢(v) + lven)k. This affects the onset of convective instability (see
Sect.[T6.6) but not the onset of string stability as such.

In addition to a response to multiple leaders, we will also include a response to
the immediate follower since it can also influence the driving behavior, e.g., by light
signals or the horn.

Inserting the speed definition v; = x;, the general multi-anticipative car-following
model for M leaders and one follower can be written as a set of coupled second-order
differential equations for the positions x j@

Xj :f(Xj+1 —xj,xj_l —)Cj,...,Xj_M —)Cj,x]‘+17)€j,)€j_1,...,Xj_M) . (1662)

Linearization. The homogeneous steady state defining the microscopic fundamen-
tal diagram v,(Ax,) is given by

0= f(—Axe,Axe,...,MAXe,Ve,...,Ve). (16.63)

Linearizing (16.62) around the small positional perturbations y; of each vehicle j
defined by x;(r) = vt — jAx. +y;(t) gives

M
yj: Z (fvm(yjfmfyj)+fvm)}j7m) (16.64)
m=—1
with 5
a(xlfm_'x]) e
and 5
Jom = ( f ) , —1<m<M. (16.66)
avj*m e

Inserting the wave ansatz y;(¢) = yexp(Ar +ijk) results in a quadratic equation for
the dispersion relation A (k) that is formally equivalent to (16.44),

A2+ p(k)A +q(k) =0,

with the functions

M ) M )
p) ==Y fne™, qk)= Y fun (1) (16.67)

m=—1 m=—1

% In case of heterogeneity, the functions f(-) = f;(-) are different for each vehicle but we will not
consider this further, here (cf. Sect.[T6.4.3).
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Notice that for the special case of a classical single-leader car-following model with
M=1,f,_1=fs-1=f0=0, fio =1, fin = fi, and f; = f;, we revert to the
relations derived earlier.

As in the single-leader case, the first instability is a long-wavelength one and
string stability is characterized by a nonpositive quadratic Taylor coefficient in (16.44),
ie., by with

. . 1
Po==Y fom PL=1Y.Mfim, @ =iy Mfon, G =Y, M fin. (16.68)
m m m 2 m

16.4.3 String Stability for Open Systems: Transfer Function

While the wave ansatz is suitable for infinite systems (continuous wave num-
ber k) and closed systems (the system length is a multiple of the wavelength 27 /k),
a different approach is suitable for open systems where the dynamics of a finite
or infinite sequence of followers of a given leader trajectory is to be investigated.
Specifically, the perturbation is no longer momentary and everywhere (initial con-
dition) but permanently sustained and localized (a single leader is perturbed). Con-
sequently, we decompose the perturbation into temporal rather than spatial Fourier
modes. This ansatz also allows more easily the generalization to heterogeneous pla-
toons, time delays, and lower-level controllers. The stability of multi-anticipative
models, however, is better analyzed using the wave ansatz (Sect. [[6.4.2).

For finite platoons we have already derived that the local stability of a finite
platoon is the same as that of a single follower, i.e., that a finite-time perturbation
of the leader will not lead to permanent perturbations of any follower (Sect.[16.3.2).
Here, we investigate the related but different problem that the leader has permanent
perturbations (that can be decomposed in a temporal Fourier series) and how these
perturbations propagate from follower to follower.

We start with the Laplace transformation ansatz u;(t) = il jem for the speed per-
turbations of follower j with the complex growth rate A = 6+ Bl Inserting this

into (16.37)) results in
(A2 =Afo+f) ;= (Afi+ fy)dj-1, (16.69)

which can be formulated in terms of a complex transfer function

G()L) uj }3]' _ )Lfl+fv

— 16.70
T P Eay ey (16.70)

relating the perturbations of the follower to that of the leader. Assuming that the
perturbations of the leader can be decomposed into temporal Fourier components

30 Often, the variable s is used in the control theory literature. However, in order to avoid confusion
with the gap variable s and consistent with other locations in this chapter, we name the complex
growth rate A.
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fpe'®, we can set A = i resulting in the stationary transfer function

10 f; + fs

(16.71)

For each harmonic component of the leader’s oscillation, the next follower responds
* with a phase shift arctan [Im(G(iw)) /Re(G(im))],
* and a growth factor |G(iw)| where

fSZ +f12(1)2
(fi— @)+ fro?”

G(io)|* = (16.72)

For @ — 0 (oscillations with durations tending to infinity), we have G(iw) — 1, i.e.,
the phase shift tends to zero and the growth factor to unity. This is to be expected in
view of vehicle conservation and finite follower response times.

In order to investigate string instability of infinite platoons, we determine the
conditions for which at least one frequency mode has a growth factor exceeding
unity, i.e., we look for the maximum of |G(i®)|?. A necessary condition for a maxi-
mum (which we will call a “resonance condition”) is given by setting the derivative
of |G(iw)|? with respect to ®? equal to zero resulting, after a lengthy calculation, to

s = J’; (—fs+ N —f3+2fs)) : (16.73)
!

This has several consequences:

* A maximum of |G| in ®?* > 0 only exists if fl2 —fv2 +2f; >0, i.e., the infinite
platoon is string unstable or neutrally stable (otherwise, Wreg 1S imaginary)

* At string instability, f> — f2+2f, > 0, one can show that (I6.73) corresponds
to a unique maximum of the growth factor |Gres| = |G(ityes)| > 1. Furthermore,
both the growth factor and the resonance frequency of the fastest growing mode
increase strictly monotonously with f12 — f242f,.

e At neutral stability, the resonance frequency @es of the maximum growth tends
to zero justifying the ansatz (16.50) made earlier for the infinite system

In summary, long-wavelength perturbations decay from follower to follower if 2 f; —
2+ fl2 < 0 which is precisely the condition (16.60) for string stability:

An infinite homogeneous vehicle platoon is asymptotically string stable if all
oscillations decay when propagating backwards from vehicle to vehicle.

31 This means that there is no horizontal tangent in 2. However, in o, there is a horizontal tangent
corresponding to a maximum |Gyes| = 1 at @ = 0.

32 Here, we take the limit @? — 0 while in ([6.30), we assumed the wavenumber k — 0. However,
for a finite propagation velocity, these two limits are interchangeable.
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This is plausible since any temporary perturbation (as required by the defini-
tion of string instability) can be decomposed into Fourier components, and the de-
phasing of the components when going from follower to follower will lead to per-
manent fluctuations unless the components decay to zero for j — oo. In this sense,
the transfer function (Laplace) ansatz leads to the same string stability criterion as
the wave ansatz.

Heterogeneous strings. Without multi-anticipation (i.e., looking only at the im-
mediate leader), the transfer function (16.70) exclusively depends on the model pa-
rameters of the considered follower, irrespective of the composition of the leaders
and further followers. This makes it easy to define the strict and head-to-tail string
stability for such car-following models.

The strict string stability is satisfied if every single follower has a growth factor
of at most one for all frequencies ®,

|G;(io)| <1Vo >0, j=1,...,n, (16.74)

where G;(A) is the transfer function (16.70) for the sensitivities fjs, fj,, and fj
corresponding to the model and parameters of follower j for a given steady state
(Se; Ve)

For formulating the head-to-tail string stability, we first define the head-to-tail
transfer function as

Gu(A) = Z—’; ~T16;™). (16.75)
=1

A finite heterogeneous platoon satisfies weak or head-to-tail string stability is
|G (i@)] < 1 Yo > 0. (16.76)

Assuming that the first instability arises at @> — 0 in the heterogeneous case as
well, we can evaluate head-to-tail stability according to

33 Notice that even different models of the form (IT.3), (IL.6) are allowed, e.g., a mixture of
human-driven and automated vehicles with their respective models.



376 16 Stability Analysis

d
Ozda)z (HG i0) >
0=0
1n<H|G o)

= % (Zln|G (io) )
10

Z|G )|2d0)2| j( )

SH—-

where we have made use of the strict monotonicity of the logarithm function and
that |G;(i®)|*> — 1 for @ — 0. This means that a heterogeneous platoon is long-
wavelength head-to-tail string stable if the arithmetic average of the individual string
instability criteria szl — szv +2f;s weighted with 1/ szs is nonpositive. However, this
popular formula is only a necessary, not a sufficient condition for head-to-tail string
stability because, for some configurations including string stable and string unsta-
ble followers, the first instability in the heterogeneous platoon may arise at finite
frequencies. Then, we need to evaluate (I16.76) which is exact.

Obviously, for homogeneous platoons, the head-to-tail and strict string stability
criteria coincide and are given by the conventional string stability criterion (16.60).

Explicit time delays and lower-level control. Presently, most semi-automated
cars with longitudinal adaptive-cruise control (ACC) are not string stable. While
this is irrelevant for low penetration levels as long as they are locally stable, it mat-
ters for larger levels. Since, for physical reasons, a vehicle cannot implement a pre-
scribed acceleration immediately (cf. Sect. for details), we need to consider
the control path of the vehicle powertrain as well. This means the ACC is composed
of two components,

» the commanded acceleration given by the higher-level controller, typically a car-
following model with transfer function G(1),

» the mapping of the commanded to the physical acceleration given by a lower-
level controller with transfer function H(A).

In the simplest case, the lower-level controller is modeled by a first-order lag ac-
cording to

dapnys _ Qcmd (t) — Uphys (t) 1
- Ta - HA)=Hi(2) = TA+1

where Hj (1) is the transfer function of this “PT1 element”. Alternatively or addi-
tionally, one can also model an explicit reaction time delay
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daphys
dr

or combine both elements (cf. Eq. (12.41))

= dema(t —Tg), H(A)=Hy(A) =e ",

ddphys  aemd(t — Ta) — apnys (t — T4) _
e - , HA)=H (A)H:(A).

The total transfer function of an ACC controller with a car-following model, a PT1
element and a delay element as vehicle control path is then given by

Gacc(X) = GAH(A). (16.77)

This use case demonstrates the strength of the transfer function approach: the gen-
eral string stability criteria and remain valid, just the evaluation in
terms of f;, f,, f1, T, and T; becomes more involved. In particular, for explicit de-
lays 7; > 0, the first instability often arises at a finite frequency. This is similar to
the situation for local instabilities, cf. Fig.

16.4.4 Application to Specific Car-Following Models

In the following, we apply the general stability criteria to some of the car-following
models presented in the Chapters[11lto[13}

Optimal Velocity Model and extensions. We analyze the Full Velocity Difference
Model (FVDM) presented in Section [I1.8] which is a generalization of the Optimal
Velocity Model (OVM). Its acceleration function f(s,v,Av) = (vopt(s) —v)/T — yAv
is of the form f(s,v,Av), so Eq. is the suitable criterion for string stability.
With f, = —1/7 and f4, = —7, we obtain

V(s) < o= +7. (16.78)

For bound and congested traffic, the left-hand side v/, (s) is of the order of the inverse
of the time gap. Specifically, for the optimal-velocity relation (T1.24)), it is directly
given by the inverse 1/7 of the desired time gap 7.

Traffic flow modeled with the OVM (y=0) is only string stable if T < %v’e(s), ie.,
the speed adaptation time 7 must be smaller than half the time gap of the order of
1-2s. Since this implies unrealistically agile drivers and unphysically high accel-
erations, the OVM cannot describe realistic driving behavior. The speed difference
sensitivity y of the FVDM partially resolves this problem since sensitivities ¥ of the
order of 1s~! are realistic in car-following mode if speed differences are not too
large. However, as discussed in Section [T1.8] the FVDM is not complete since the
sensitivity to speed differences does not tend do zero when gaps tend to infinity.
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Newell’s model. Newell’s model (I1.28)) is formulated in terms of an iterated cou-
pled map, so the results of Section [[6.4.1] cannot be applied directly. Proceeding
as in this section, the resulting solvability condition for the growth rate A contains
algebraic terms but also exponentials e*4 and, therefore, cannot be solved analyt-
ically As a consequence, no compact analytic stability criterion can be derived.
Moreover, in contrast to models formulated as differential equations but similarly to
time-delay differential equations, the first instability may be of a short-wavelength
type.

If one assumes a priori that short-wavelength instabilities are not relevant, it
is a good approximation to replace difference quotients by time derivatives using
Eq. (ILI3). Thus, Newell’s speed update rule v;(t +7) = v,(s;(r)) can approxi-
mately be formulated by the time-continuous acceleration equation

fNewell (S, v) _ Ve(S) — V.

(16.79)
It is identical to the OVM if one identifies the speed adaptation time 7 with the
update (reaction) time 7. We conclude that Newell’s model is stable with respect to
long-wavelength string instabilities if

1
ve(s) <

< 37 (16.80)

Gipps’ model. For reference, Gipps’ model has the acceleration equation
Vsate (8, VI) — V)

T

Sf(s,v,v;) = min (aﬁ-ee(\/),

with a monotonously decreasing free-flow acceleration age.(v) and the safe speed
(making the usual assumption 8 = 7/2 for the safety time cushion)

Vsafe(V, vy, 8) = —bT+ \/bzf2 +b [Z(S—so) —v‘c—l—vlz/bl}.

For free flow, the steady state is at vo with vy =aj..(vo) < 0and v, (s) = fy = f; =0.
Hence, the stability criterion (I6.38), 0 < 0.5 f,, is always satisfied.

For congested flow, we assume that the minimum leading deceleration b; satis-
fies (IZ.21)) because the model does not give plausible results, otherwise. Under this
conditions, the steady-state gap s.(v), Eq. (I217), is strictly monotonously increas-
ing within its application range v < v resulting in the gradient

1 1

= >0.
) st (1-4)

v () =

The sensitivities needed for the stability criterion (16.58)) are

34 The equation for A is of a similar form as the condition for local instability of time-delay
differential equations.
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f__ve—i—l.Sb’c f—ﬁ Ve
YT v+ b7) T by t(ve+b1)
and the model is string stable according to (16.58)) if
o (24 ) et
<>’ 16.81
vels) < 2t(v, + b7) ( )
For b = by, this simplifies to
2 3
< =
3t T 2t

which, obviously, is always satisfied. For b; > b, the drivers get more conservative
(because they assume that the leader can brake harder) and the stability condition is
satisfied even with a greater margin. If, however, Condition (I2.21)) for b, tends to
its limits, the denominator of v, (s) for v, — vy tends to zero, the gradient v, (s) to
infinity and the stability criterion is violated (cf. Fig.[16.10).

" 8=1/2=0.60 s, b=b=1.5 m/s?

s 0=1/2=060's, b=2.0 m/s> — - - |

40 + 06=1/2=0.60 s, b=1.4 m/s® ----- ]
Simplijfied Gipps

35 ¢ Vo |

30

Speed [m/s]
N
a1

Steady-state gap [m]

Fig. 16.10 Steady-state speed v.(s) for different variants and parameterizations of the Gipps
model. The parameters not given in the plot are the highway parameters of Table [12.1] (vo =
120km/h, so =3m, T=1.2s,anda=b = 1.5rn/sz).

In summary, as expected, the stability condition depends essentially on the ratio
b/b;. If b/b; < 1, congested flow is always stable. However, if b; is only somewhat
smaller than b, string instability sets in near v = vy, particularly for high desired
speeds. Finally (not shown but the derivation is straightforward), congested flow
without a safety cushion (6 = 0), is always string stable if b/b; < 1, marginally
stable if b/b; = 1, or unstable if b/b; > 1.

Simplified Gipps’ model. The simplified Gipps’ model has the same general struc-
ture (12.9) as the original model but the safe speed (12.16) does not depend on the

actual speed and is given by v (s,v/) = —bT + \/bzfz + 2 +2b(s — 50) .
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For free traffic at vy, we have v,(s) =0, f, = —1/7 and f; = 0 and the string
stability criterion (T6.38), v, < (f; — f,)/2 or 0 < 1/7, is satisfied.

For interacting or congested traffic at the homogeneous steady state, we have v =
Vsafe < Vo, the microscopic fundamental diagram v, (s) = max(0, (s —so)/7), and the
gradient v/,(s) and the sensitivities needed for the criterion (I6.38) and for (16.47)
evaluate to

1 b 1 v
(s) = — =— =—= = 16.82
=2 A= eng P T e (16.82)
resulting in the string stability condition
1 1 Ve
-<—1 = b1t <0. 16.83
17‘21( Jrve+b1> - ( )

Since both the driver’s braking deceleration b and the response time 7 are strictly
positive, this is never satisfied, i.e., congested traffic represented by this model is
always unstable. However, the instabilities are always of the convective type (cf.
Section [[6.6). Moreover, for reasonable values of the deceleration parameter b, the
maximum growth rate o(k) according to (I6.48)) is of the order of one hour and
the perturbations need several kilometers of propagation to grow significantly (cf.
Fig.[12.3). In many cases, the critical road sections are shorter, so the perturbations
leave these sections before growing into fully developed traffic waves. As a result,
the model is de facto marginally stable if bt < v, which is satisfied unless traffic
flow is nearly stopped

Intelligent Driver Model. The IDM acceleration function is of the type a(s,v,Av).
Since the partial derivative f, with respect to the vehicle speed would result in a
markedly longer analytic expression than the derivative with respect to the gap s,
we make use of relation and set f, = — f;/v.(s.). Then, Eq. reads

Js

! (se) < — fan 16.84
Ve(se) —_ ZVQ(SQ) fAV ( )
With the partial derivatives
~ 2a(sg+v.T)? a ((so+v.T)v
leM: (0 3e ) 7 ﬂ?M:_ ((0 26 )e)7 (16.85)
s b 55

we obtain the string stability criterion (Fig.[T6.11)

(Va(se))? < (16.86)

a(so+v.T) {so +v,T N vevé(se)]
S b

2 Se Vab

e
where the IDM steady-state gap (12.29) is given by s, (v) = (so+vT)/\/1 — (v/vo)®.
For reference and for using (I16.60) and (I6.61)), we also give the partial derivative

35 For v, = 0 and s < 50, traffic flow restabilizes.
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of the IDM acceleration with respect to the speed, and the partial derivatives of the
IDM in the formulation f(s,v,v;). For a later use in the multi-anticipative IDM, we
have split f, and f, into a free and interacting contribution:

7IDM 7IDM  free ZIDM, int
v =0 +57 (16.87)
6—1
ADM.free __ A0Ve apMine _ —2aT (so+veT) 16.88
v - 5 ) Vv - Sz bl ( . )
VO e
IDM,free __ FIDM.,free IDM,int __ ZIDM,int 7IDM
% - ’ v —Jv +fAv ’ (1689)
IDM ZIDM IDM ZIDM
s =L T =—tar (16.90)

Condition (16.86) reflects the three influencing factors for string stability discussed
in Section[16.4.1l on page B70

 The tendency to instability increases with the sensitivity v, (s) to changes of the
gap fueling the feedback mechanism.

* The tendency to instability decreases with the driver’s agility characterized by
the acceleration parameter a.

* And it decreases with decreasing comfortable deceleration b, i.e., with increasing
level of anticipation.

Notice that v, (s,) & 1/T for v < vy, so the desired time gap T is the main influ-
encing factor to the gap sensitivity (besides the actual traffic state): Lower values
of T lead to higher sensitivities v/,(s.) and to a higher tendency to instabilities. In
agreement with common sense, traffic flow becomes more unstable if the time gaps
in car-following mode are comparatively short P4

For the limiting case v, — 0, or equivalently, s, — so and v, (so) = 1/T, we obtain
the simple explicit stability condition

N
> 0

az . (16.91)

If the stability condition is satisfied but traffic flow is string unstable for
congested traffic of finite steady-state speed v., one speaks of restabilization. In
this case, mildly congested traffic resulting from comparatively small bottlenecks is
unstable while nearly standing traffic behind severe bottlenecks is stable, creeping
slowly. This will be discussed in Section[18.2]

Optimal Velocity Model with impatient followers. Sometimes, drivers are urged
from behind by light and horn signals from impatient followers. To model this in the
simplest possible way, the OVM (I1.21)) is first separated into a free and interacting
force,

dv Vopt () — Vv _Yo—v Vopt () — vo

__ pfree int
dr T T T =AM sy), (1692

36 On the other hand, short gaps lead to a higher dynamic capacity, see Section[12.3.6]
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Fig. 16.11 String instability of the IDM visualized by the reaction of a sequence of vehicles driving
in steady-state equilibrium far below the desired speed (vo = 120km/h) behind a leading vehicle
whose driver reduces his or her speed from 60 km/h to 40 km/h. Shown is the first vehicle (leader)
and the 10™, 20, 40, 60, and 80™ vehicle. Left: Traffic flow is string stable (I’ = 1s, so = 2m,
a=b=2m/s?). Right: Traffic flow becomes unstable by reducing the IDM acceleration parameter
from a =2m/s* toa = 0.6m/s%.

and then augmented with a “pushing” force from the follower of the subject vehicle
corresponding to ifs interaction force but reversed in sign and weakened by a factor
A<,

dvj vo—v n Vopt (Xj—1 = X;) — Vo _AVOPt(xj_xj-H) —Vo (16.93)

dr T T T

In the special case A = 0, this model reverts to the OVM while, for A = 1, we have
momentum conservation of the interactions. The general steady state is given by
Ve(s) = (1 — A)vopi(s) + Avo. The sensitivities of the general linearization
are given by

1
fVU = fv - _;,
fvl == fv,—l :O,
Vi (Axe)
fio=fi= M,
T
v (Ax,)
fs,—l - AL’L_e
resulting in the Taylor coefficients (16.68)
U i0-A(a) (A4
pO_Ty Pl— ) ql— e R q2_ 27: ,

and, with (16.55)), to the long-wavelength string stability criterion
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, 142

Vopt(s) S m . (1694)

Notice that, for the special case of no impatient followers (A = 0), this condition
reverts to the normal OVM string stability condition (I6.78). Remarkably, the ef-
fect of impatient followers suppresses string instability. However, this model is not
suitable for very congested or standing traffic (cf. Problem [16.3).

Multi-anticipative IDM. We consider the multi-anticipative extension (13.14) of
the IDM, i.e., the Human-Driver Model (HDM) without temporal anticipation and
estimation errors. In this model, the interaction forces of all M leaders are added
according to

dv: Mo
el B CHE D W R R RTRTEY) (16.95)
m=1
with
2
N . so+v;T + L Yiom)
ffree(vj) —a (1 _ <v1) ) ’ fmt(.) — J 2Vab . (16.96)
Vo Xj—m —Xj

Without loss of generality, we consider a vehicle length /., = 0, so, in steady state
(Ve,Se(ve)), we have x;_,, — x; = ms,. For nonzero vehicle length, this relation re-
mains unchanged if we assume that the independent space variable of the m™ leader
is the sum of all gaps instead of x;_,, —x; which is consistent with Eq. (I3.11).

This means that, in steady state, the interacting forces decrease with 1 /m2 and
the steady state is given by

se(v) = CasPM(v), (16.97)
where
Mg
Ci=Y —. (16.98)
m=1 m

Since, according to (I2.29), the IDM steady-state gap s\PM(v) = (so +vT)(1 —
(v/vo)?)~1/2, the multi-anticipative IDM has the same microscopic fundamental
diagram (steady-state relation) as the original IDM when setting

nglti _ S()/Cz, oulti T/Cz. (16.99)

The fact that the steady-state interactions decrease with 1/ m? directly leads to fol-
lowing multi-anticipative sensitivities of the linearized model,

1 1
fom = ﬁfs“)“, fm=—5 M =1, M (16.100)
and to '

va _ fv _ ‘}DM,free_FCz IDM, int (16101)

v
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where fIPM fIPM “and f/PM are given by (16.89) and (I6.90). This leads to the
same expression for the growth rate as (I6.47) with the general functions (16.67)
given by

—imk

plk) = —fIPM -

(16.102)

—imk

lDMZ l—e

m=1

Hence, the Taylor coefficients (16.68)) to determine the analytic stability crite-
rion (16.55) are

Po = _fIDM,free C fIDM ,nt IIDM7 pL= icglflIDM (16 103)
—ico ™, o= S -

with C; and C, given by (16.98)).
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Fig. 16.12 Linear growth rate of the more unstable branch of perturbations (I6.47) of a steady
state corresponding to congested traffic (vo = 48km/h) for the multi-anticipative IDM with M = 1
(normal IDM), 2, 3, and 4 leaders as a function of the scaled wave number (phase shift) k for the
IDM acceleration parameter a = 0.8 m/s2. Also given are the values of the second-order Taylor co-
efficient 6”(0), Eq. with (T6.103)) (a positive value means string instability). The remaining
IDM parameters are given in the caption of Fig.

Remarkably, the expansion terms of the multi-anticipative IDM growth rate differ
from that of the single-leader IDM just by factors 1, Cy, or C; and by the steady-
state gap (16.97) to be used when calculating sensitivities f, f, and f; which is
larger than that of the single-leader IDM by a factor of C,.

Figure shows the resulting growth rate o (k), Eq. (I]m), for a parame-
terization leading to the same fundamental diagram as in Fig. [16.9] i.e., evaluating
everything with the minimum gap sm‘ﬂ“ =50/Cy and T™ =T / C2 In order to show
the stabilizing effect, a low acceleratlon parameter a = 0.8 m/s? is chosen such that
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the M = 1 curve corresponds to the most unstable curve in Fig. While this fig-
ure clearly shows a stabilizing effect of multi-anticipation, its true power comes into
play when considering finite reaction times since multi-anticipation simply “buys
time” to respond.

16.5 Flow Stability of Macroscopic Models

For investigating macroscopic flow instability, i.e., the equivalent of the microscopic
string instability, we start from the general acceleration equation (I0.1)) of second-
order macroscopic models combined with the continuity equation (I0.10) for ho-
mogeneous road sections including possible diffusion terms.

16.5.1 Generalized Linear Formulation of Second-Order Models

We rewrite the acceleration equation such that all partial derivatives and nonlocal-
ities contributing to actual accelerations appear explicitly as independent variables
of the acceleration function. Together with the continuity equation, this gives

dp V) %
- =D— 16.104
o T ox P (16.1049
A% oV
W—'_VE :A(pvvapavvaavavxvpxmvxx)’ (16105)
The partial derivatives and nonlocalities of the density field are given by
ap(x,t 92%p(x,t .
px:%, H:%, Pa(x,7) = p(x4,1) with x, >x. (16.106)

The derivatives V,, V., and nonlocalities V,, of the speed field are defined in analogy.

As for the microscopic models, we expand Eqs. (I6.104) and around
the steady-state solution (p,,V,). The steady-state condition itself defines the fun-
damental speed-density relation V, = V,(p) by

A(p,Ve(p),p,Ve(p),0,0,0,0) = 0. (16.107)

Moving along the one-dimensional space of steady-states,

av,
dA = (Ap +Ap,) dp + (Av +Avu)$dp =0, (16.108)

37 Otherwise, Fourier modes cannot be used and the analysis becomes more complicated.
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we obtain the following relation between the partial derivatives of the acceleration
function:
dve(p) _ V/ _ 7Ap +Apa
dp ¢ Ay + AV{/Z ’
Here, the partial derivatives of the acceleration function (including these appearing

in Eq. (I6.114) below) are given by

9dA
ap|,

(16.109)

2
9P

oA
Pxx — J Prx

0A
Ap = pu = L Ap= g (16.110)

e e

[IPR1]

The derivatives Ay, Ay,, Ay,, and Ay, are defined in analogy. The subscript “e
denotes that the functions are evaluated at the steady-state point (p., V.(pe)). Lin-

earizing Eqs. (16.104) and (16.103) using the ansatz

p(x,1) = pe+p(x,1), (16.111)
V(x,t) =V, +V(x,1), (16.112)

leads to the linear partial (and possibly nonlocal) differential equations

ap oV ap ’p
871; = _Pea Ve ap Dﬁ’ (16.113)
A% 8V
P 8 +App -I—AvV—I—Apapa +Ay,V,
ap oV 2°p 0%V
+Ap, ap tAv o T g5 T 57 (16.114)

which p,(x,t) = p(x4,t) and V,(x,t) = V (x,4,1).

16.5.2 Linear Stability Analysis

The general ansatz to solve this system of equations consists of linear waves
(Fourier modes) of wave number k and a growth rate A (k),

Pr(x1) o P\ ai—ike _ [P (o+io)—ike
<Vk(x,t)> <‘A/>e = <‘7>e . (16115)

In contrast to the microscopic ansatz (16.39), the macroscopic Fourier modes are
defined in the stationary (road) system. Furthermore, the quantity k is dimensional
with the unit m~!. Specifically:

* The wavelength is given by 27 /k, i.e., k is consistent with the physical defini-
tion of a wave number. This has to be contrasted with the physical wavelength
27m(se +1)/k of microscopic models.

* With ] lanes, a wave contains /p,27/k vehicles.
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* The points of constant phase ¢ = wt — kx (the waves), move with the velocity
é(k) = @/k in the stationary system. This has to be contrasted with the physical
propagation velocity émic(k) = ve(se) + (se +1)%¢ of microscopic waves in the

stationary system.

Similarly to the analysis of car-following models, inserting the ansatz (16.113) into
Eqgs. (16.113) and (I6.114) results in an algebraic linear system of equations for the
amplitudes p and V of the density and speed oscillations, respectively:

Ap
AV = (Ap +Ap,e 0 —ikap, — K24y, ) P

(ikV, — Dk*)p + ikp,V,

o+ (ikVe + Ay + Ay,e R —ikay, — Ay, ) V.

Here, s, = x, — x is the anticipation distance of nonlocal models.

As in the analysis of the car-following models, the solvability condition for this
homogeneous linear system leads to a quadratic equation of the form (I6.44)) for A.
The long-wavelength expansion of the more unstable branch (given by Eq. (16.47)
with the negative sign of the square root) around k£ = O proceeds in exact analogy
to the analysis of car-following models in Section[I6.4.1l Again, the result takes on
the general form (16.33) but now with the macroscopic expansion coefficients

po=—(Av +Ay,),

p1 = i(Ay, +s.Ay, —2V,),

q1 = iVe(Av +Av,) —ipe(Ap +Ap,) = —iQ;po,

@2 = Ve(Av, +54Av,) — Pe(Ap, +5:Ap,) —VZ —D(Av +A,,).

(16.116)

To arrive at the second equality sign of the expression for g;, we have applied

Eq. (16.109):

. . Ap+Ap, . .
a1 = ~iVepo +ipepo PPt = —ipo(Ve+ V) = =iQepo.  (16.117)
Ay +Ava
In first order of the wave number k, the general long-wavelength expansion (16.33)
yields a purely imaginary contribution and results in the phase velocity
o]
ik =—=-L L 643 = QL+ 0(k). (16.118)
k Po
As in the LWR models, the propagation speed of waves of low wave number (k <
) is given by the gradient Q/, of the fundamental diagram. In contrast to these
models where ¢ = @), is valid for any perturbation, the wave velocity of second-
order macroscopic models changes with the wavelength and é = limy_,o¢(k) = Q)
is only a linear and long-wavelength approximation. In Problem [16.2] we will show
that expression (I6.118) for the physical phase velocity in the road-based system
also applies to the considered car-following models.
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As in the microscopic analysis, the second-order term of Eq. (16.33) provid-
ing the stability properties is purely real and the string stability criterion is given
by (16.53). Inserting (I6.117), ¢ = —iQ’, po, into (I6.33) results in the simple, still
general macroscopic flow stability condition

(Q,)*—ip1Q, — g2 <0. (16.119)
Notice that py dropped out completely in this relation.

Local models. Local macroscopic models are defined by Ap, = Ay, = 0. Inserting
the macroscopic expansion coefficients (I6.116) for p; and ¢, and replacing Q, =
V. + p.V,, we obtain the stability condition

Flow stability for

N2 « _ U _
(PeVe)” < —pe (Vev, +Ap,) — DAY local macroscopic models.

(16.120)

With (16.109)), this condition can also be formulated purely in terms of derivatives
of the acceleration function,

Ap\ 2 ApA
(pzp) gpeA” " p,Ap, — DAy. (16.121)

We emphasize that this criterion does not depend on Ay,, or A, .. So, contrary to
intuition, flow stability is not enhanced by diffusion terms in the equation for the
speed field. It is enhanced, however, by the diffusion term proportional to D in the
density equation. Remarkably, without diffusion, the form ([6.120) does also not
depend directly on the acceleration sensitivities A, and A, with respect to density
or speed, respectively, since they only appear in the combination V, = —A,/A,.
If the macroscopic model can be written in the form (IQ.17), i.e., the acceleration
function does not contain speed gradients, and all other gradients can be written in
terms of a complete differential — % dP/dx of atraffic pressure P(p(x,t)) depending
on density, only, Eq. assumes the form

(pV))? <P.—DAy where P.=P'(p.). (16.122)

Nonlocal models. Since the nonlocal terms containing p,(x,7) = p(x + s4,t) or
Va(x,t) = V(x+s4,1) constitute anticipative elements (s, = x, —x > 0), they play
the role of the gradient terms of the local models and it does not make sense to
include the latter in nonlocal models: After all, nonlocal models have been pro-
posed to overcome some conceptual and numerical problems that are inherent to
the gradients of local models Therefore, we can set Ap, =0, Ay, =0, and D = 0.
However, this applies to gradients related to accelerations of single vehicles, only.
Gradients arising from kinematic reasons (the advective term V%—‘;), or representing

38 Diffusion terms imply infinite speeds. Furthermore, in the presence of speed gradients, negative
speeds cannot be excluded. Moreover, local models are numerically more unstable than gradient-
free nonlocal models.
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purely statistical effects (pressure term —1/ p%, cf. Section [10.3.4) are retained.
Consequently, the nonlocal models considered in the following (including the GKT
model) have acceleration equations of the form

v,V 19P(p)

FTIA R =A(p,V,pa;Va) . (16.123)

Evaluating the general stability condition (L6.119) for this model class leads to

Stability condition for
vhy<p — V/Ay +A Y 16.124
(PeVe)” < Fo— pesa (Vev, +4p,) nonlocal macro-models. ( )

Discussion. As for the microscopic models, macroscopic models tend to become
more instable with increasing gap sensitivity |V/(p)| representing the degree of in-
teraction between drivers, i.e., completely free traffic is never unstable. Furthermore,
like in car-following models, anticipation in the form of gradients (Ay, > 0, Ap, <0)
or nonlocalities (Ay, > 0, Ay, < 0) enhance stability. By comparing the stability con-
ditions (16.124) and it becomes evident that the nonlocalities Ap,, Ay, of
the nonlocal models directly correspond to the gradients Ap,, Ay, of the local mod-
els.

In contrast to microscopic models, the speed sensitivity Ay alone does not in-
fluence stability since it appears only in combination with the density diffusion D
which is zero, in most macroscopic models. We conclude:

Without gradients or nonlocalities, macroscopic models are unconditionally
unstable.

Furthermore, linear stability does not depend on diffusion terms characterized by
Ap,. and Ay, but only on density diffusion characterized by the coefficient D. Never-
theless, diffusion terms in the speed equation tend to stabilize perturbations of higher
amplitude and/or frequency that are outside the limits of this linear long-wavelength
analysis. Therefore, such terms are included into some local macroscopic models,
e.g., the Kerner-Konhiuser model (10.21).

16.5.3 Application to Specific Macroscopic Models

In the following, we apply the general criteria to three models of Chapter[I0} Payne’s
model, Kerner-Konhiuser model, and the GKT model. Furthermore, the investigate
a modified Aw-Rascle model

Payne’s model. The acceleration function of Payne’s model (I0.18)) is given by

Vo)V, Vi(p) 9p
A(x,t) = - + 2pT Ox
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With the partial derivatives A, = V,/(2pT), Ay, = 0 and D = 0, the macroscopic
stability condition (16.120) for local models gives

Ve
2p7

pVe/z < _APx =

and (watch the signs keeping in mind that V) = V/(p) < 0)

1
/ !
—Vilp) = Vi(P)I < 7 (16.125)
Again, stability of traffic flow increases with increasing agility of the drivers (de-
creasing speed adaptation time 7), and decreasing sensitivity |V)(p)| to density
changes which is the macroscopic equivalent to the microscopic gap sensitivity

/
Vi ().
Notice that this result could also be obtained directly from the formulation of
Payne’s model with a pressure gradient, ‘(11—‘: = V"T_V — %% with P = -V, /(2p).

Applying ([6122) gives (p.V,)> < P, = —V//(2p7)

LWR models. In the limiting case T — 0, Payne’s model tends to the LWR model
with diffusion (cf. Section[10.4.1)). According to Eq. (16.123)), this model is uncon-
ditionally stable. In contrast, the stability properties of the classical LWR model
without diffusion terms are undefined. However, since even the smallest finite dif-
fusion makes the model unconditionally stable and integration schemes typically
introduce a finite amount of numerical diffusion (cf. Sect.[10.3.7), the LWR models
can be considered as unconditionally stable, for practical purposes.

Kerner-Konhiuser model. For reference, the model formulation (10.22)) in terms
of the traffic pressure is given by

oV _ uov 02
ar Vox c 5 ox tpaw FP)I=pa

oV Vav _Velp)=V 19P(p)  uo*V

It is convenient to apply the form (T6.122) of the stability criterion. With P'(p) = ¢}
and D = O we obtain 5
(pV))" < Plp) = c}. (16.126)

As in Payne’s model, flow stability is enhanced by decreasing the sensitivity |V, (p)|
to density changes. Furthermore, stability grows with the drivers’ level of antici-
pation which is characterized by the prefactor c% of the traffic pressure@ We em-
phasize that, at variance with expectations, the model parameter T representing the
driver’s agility drops out of the stability condition. This makes the model somewhat
counterintuitive.

39 Notice that the speed diffusion Ay, = pt/p does not contribute to linear stability.

40 1 a statistical interpretation, c% formally denotes the speed variance in analogy to the corre-
sponding term 8 = a(p)V? of the GKT model. However, in the Kerner-Konhzuser model, cg is
usually interpreted as a purely phenomenological anticipation term.
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A modified Aw-Rascle model. For theoretical investigations, the Aw-Rascle model
is often used because it is fully flow conservative. However, it does not describe re-
alistic traffic flow, so some “generalizations” have been proposed, e.g., one with the

acceleration equation
Vv 1) 9V
- V——]=5—=0. 16.127

ar t ( pT> Ix (16.127)
Obviously, this model allows for any two-dimensional combination of p and Q =
pV as a steady state because it contains only gradients. Moreover, its flow stability
is undefined because the relevant stability criterion (I16.120) depends on the exis-
tence of a fundamental diagram to form the gradient V,(p) = —A, /Ay. By adding
a relaxation term and writing the acceleration equation term in the form

V.V 19V V(p)-V

Ve = e

ot dx pT dx T
its stability is defined. With A, = —1/7, Ay, = 1/(pT),Ap =V/(p)/7,and Ap, =0
and inserting this in (I6.120) considering V/(p) < 0, we obtain the flow stability
condition

/
> ——.
V,(pe) > 2T

Notice that, as in the Kerner-Konhéduser model, the relaxation time 7 drops out.
GKT model. In spite of the more complex GKT acceleration function given by

the right-hand side of Eq. (L0.25)), the partial derivatives necessary for the nonlocal
stability criterion (I6.124) can be expressed in a compact form,

C A 2(Vo—Ve)Pmax
“ dpa TPe(Pmax — Pe) ’
_dA  2(Vo—Ve)
OV, toy(p )T
Here, the speed variance 62 (p) = a(p)V2(p) is given by Eq. (I0.23). Inserting the

partial derivatives into the stability criterion results in the following condition for
GKT flow stability

Ap (16.128)

A,

(16.129)

2Sa(VO - Ve) Pmax _ peVg/
T Pmax —Pe  Oy/T

(peV,)* <P+ (16.130)

where s, = YV, T and P, = 62 + pa’(p)V? are taken at steady-state conditions. No-
tice that, in the limit of zero anticipation (Y — 0), the GKT flow stability criterion re-
verts to that for the Kerner-Konhiuser Model but the stability increases for increas-
ing anticipation distance s, = yv.T and increasing driver agility 1/7, in agreement
with the general qualitative discussion on the influencing factors of string stability
in Section [[6.4.1]on page 370l

Near the maximum density, we can approximate this GKT stability criterion and
express it in terms of a simple condition for the anticipation factor y (cf. Prob-
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lem[16.7),

T
> .
2T2pmaxv() (1 + (amaxﬂ:)_l/z)
This condition makes explicit that, in the GKT model, stability

Y (16.131)

* increases with 7y characterizing the level of anticipation,

¢ decreases with increasing 7, i.e., reducing the driver’s agility a = Vy/tau corre-
sponding to the maximum acceleration in the vehicle reference frame,

* increases with increasing desired time gap 7T, i.e., reducing the aggressiveness,

* increases with the desired speed Vp, i.e., increasing the agility Vy/7,

» and increases with the sensitivity to speed differences which is characterized by
~1/2
o e

Notice that all influencing factors are plausible, i.e., change the stability in the ex-
pected direction.

16.6 Convective Instability and Signal Velocities

In order to arrive at an approximate analytical criterion between convective and ab-
solute instability, we start directly with definition (I6.6) and investigate whether an
initial transient and localized perturbation propagates in both directions (absolute in-
stability), or only in one direction (upstream or downstream convective instability).
Since all considerations are based on Eq. (16.44)) and this quadratic equation applies
equally to car-following and macroscopic models (cf. Egs. and the solvabil-
ity condition derived from Eq. (I6.116)), respectively), the analysis to be developed
below applies to macroscopic flow stability as well as to microscopic string stability.
The macroscopic approach allows for a more compact analytical representation, so
we will use it in the following.

We recall that Eq. (16.44) has two solution branches (linear complex dispersion
relations) A, »(k) of which one is always decaying. Since we are interested in grow-
ing perturbations, we will consider the more unstable branch, only, by setting

[ Mi(k) ifRe(Ai(k)) > Re(A2(k)),
Alk) = {/’Lz(k) otherwise. (16.132)
Generally, the more unstable branch is given by Eq. (I6.47) with the negative sign
of the square root.

In contrast to the investigations on the instability threshold, the growth rates will
no longer be expanded around the wave number k = 0 of the firstly unstable pertur-
bation but around the wave number

ko = argml?x(Re A(k)) (16.133)
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Fig. 16.13 Propagation velocity é(k) and group velocity v, (k) for the IDM with acceleration pa-
rameter @ = 0.93m/s?. The steady-state speed v, and the other IDM parameters are given in the

caption of Fig.

of the fastest growing perturbation. Since this investigation only makes sense if there
is a linear instability at all, the associated maximum growth rate

Oop = O'(k()) =Re )v(k()) (16.134)

is positive. Due to vehicle conservation, waves of infinite wavelength corresponding
to k = 0 always have a growth rate of zero, so the wave number kg of the fastest
growing mode is nonzero as well. We emphasize that determining the argument kg
of the fastest growing mode is the only numerical step required in this sectionF] The
qualitative picture is exemplified by Fig. displaying the growth rate o (k) =
ReA (k) for the IDM as a function of the wave number k and the distance from
the linear instability threshold (corresponding to an IDM acceleration parameter
a=1.10m/s?):

* For reasons of symmetry, not only ¢(0) is O but also the tangent slope ¢’(0) = 0.

* At the instability threshold, the first unstable mode has a wave number k — 0, so
ko — 0. Above the linear threshold, kg grows with increasing distance.

» For reasonable parameter settings, the instability retains its long-wavelength na-
ture also above the threshold. In the example of Fig. the wave number ko
of the fastest growing mode at the limit between convective and absolute insta-
bility (corresponding to the middle curve) represents traffic waves of wavelength
(Iyeh + 8¢ )27 /ko = 1.3km. In other words, each wave contains 27 /ko ~ 47 ve-
hicles. Furthermore, although significantly above the threshold, the associated
growth rate 6y = 0.0017s~! corresponds to a remarkably slow growth by a fac-
tor of e! every ten minutes 2

41 The analytic derivation of the resonance frequency (I6.73) is of little help here because this
equation determines the oscillation frequency for a maximum growth rate from vehicle to vehicle
for sustained leading vehicle oscillations while here the wave number for a maximum growth
rate Re A of a spatially infinite harmonic wave field is needed. In spite of the simple appearance
of for A(k), it is extremely cumbersome to calculate analytically.

42 Notice that this is another hint that it may take some time until an initial perturbation develops
to high-amplitude traffic waves, or a traffic breakdown.
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In order to determine the limits of convective instability, we determine the spa-
tiotemporal evolution U(x,t) of the perturbation amplitude, and check whether
it spreads only upstream, only downstream, or in both directions. The amplitude
U (x,t) is defined by the system (I6.113)), (I6.114) of linear partial differential equa-
tions to be solved in the infinitely extended system with the localized initial pertur-
bation (I6.3), or the corresponding microscopic linear equations. This initial-value
problem is approximately solved in the following steps:

* The initial perturbation U (x,0) is partitioned into linear waves by Fourier trans-
forming the initial condition with respect to space. Since the initial perturba-
tion is localized within the space available for one vehicle and the interesting
Fourier modes have much greater wavelengths, the integral over x determining
the complex amplitude of the modes (Fourier transform) is the same for all rele-
vant modes, and can be set to unity.

 The Fourier modes are evolved in time by the Egs. or for micro-
scopic and macroscopic models, respectively

* In the case of microscopic models, the Fourier modes are transformed in a
fixed system with dimensional space coordinates. In any case, the develop-
ment of the complex speed components of the Fourier modes is now given by
Vi (x,1) = eM 1 (cf. Eq. (I6.113)).

 Summing over the speed components V; (x,¢) of the Fourier modes, i.e., perform-
ing an inverse Fourier transformation, gives the complex perturbation amplitude
U(x,t) = [ Vi(x,t)dk. Taking the real part finally gives the spatiotemporal evolu-
tion U (x,t) = Re U (x,1).

While the first three steps are straightforward, the last step can only be evaluated
analytically if one expands the complex growth rate to second order around k = kg
and solves the resulting complex Gaussian integral. This rather lengthy calculation

results in (cf. Fig.[16.14)

U(x,t) = Re(U(x,1)), (16.135)

2
U(x,t) < exp i(kghysx—woz)} exp K%_M> r] . (16.136)

2(iayk — Oxx

The expansion coefficients are summarized in the following table:
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Sluég'ﬁ Microscopic models Macroscopic models
oS peko = pearg max Re A (k) ko = arg max Re A (k)
o) Re A (ko) Re A (ko)

Wy VePeko +Im A (ko) Im A (ko)

Vg ve +1m A'(ko)/pe Im A" (ko)

Ok Re A" (ko)/p? Re A" (ko),

O Im A" (ko) /p? Im A" (ko).

As visualized by Fig.[16.14] expression (I6.136) represents a localized group of
waves with the following properties:

« Single waves propagate with the phase velocity vy = (ko) = a9 /k0™" (first fac-
tor of U (x,1)).

* The center of the perturbation propagates with the group velocity v, (second
factor).

* The amplitude at the center of the perturbation grows with the rate cy.

limiting behavior
convectively unstable between convectively
and absolutely unstable

absolutely unstable

V [kmih]
48.04

analytical

20 ¢ min]

Vivenh]

I
gl

simulation

20 ming

Fig. 16.14 Spatiotemporal propagation U (x,¢) of a localized perturbation of the steady-state traffic
flow (speed v, = 48km/h) as simulated with the IDM. The parameter settings of the left column
(acceleration parameter @ = 1 m/s2, further IDM parameters as in Fig. correspond to con-
vectively unstable traffic, the right column (¢ = 0.85m/s?) to absolutely unstable traffic, and the
middle column (a = 0.93m/ s2) to the limit between convective and absolute instability. For each
parameter settings, the analytical result Eq. (top row) is compared with an IDM simulation
(bottom row).

Figures [[6.13] and show that phase and group velocity are different from
each other (and also different from the LWR propagation speed ¢ = limy_,o¢(k)):
Since v, is larger (less negative) than vy, the waves emerge at the downstream
boundary of the perturbation, propagate through the perturbed region, and vanish
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at the upstream boundary In spite of the many approximations made in deriv-
ing Eq. (L6.136), this analytical expression agrees with the simulation result in fine
detail.

(a) Stability Class 1a (b) Stability Class 2b
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Fig. 16.15 Propagation velocities of linear perturbations as a function of the steady-state density
Pe. Shown are the group velocity v,, the phase velocity v4 and, for comparison, the LWR propa-
gation velocity Q. (p) for the IDM. In Plot (a), traffic flow at capacity is unstable (stability class 1,
a=0.8m/s?, the other parameters are as in Fig.[[6.9) while, in diagram (b), traffic flow at capacity
is linearly stable (stability class 2, ¢ = 1.1m/s?).

By applying the definition (I6.6)) of convective instability to the solution (T6.136),
we finally arrive at the following analytic criteria for convective instability:

2 2 .
Vg 0] Convective
0<op < 2Dy’ D, Ok (1 + Gk2k> instability. (16.137)

The first inequality sign states that traffic flow must be linearly (string or flow) unsta-
ble while the second inequality ensures that the perturbations propagate in only one
direction. Notice that Eq. (I6.137) depends only on the square of the group velocity,
so it does not distinguish between upstream and downstream convective instability.
The latter information is directly contained in the analytical solution (I6.136): A
steady-state flow satisfying Eq. (I6.137) is convectively upstream unstable if v, < 0,
and convectively downstream unstable, otherwise.

Remarkably, the range of growth rates corresponding to convective instability in-
creases with the square of the group velocity v, and with the inverse of the second-
order effective dispersion coefficient D2 If vy &~ 0 (corresponding to the transi-
tion between free and congested traffic or to congested traffic of comparatively low
density, cf. Fig. [[6.13(a), the instability is always absolute. For congested traffic
sufficiently far away from the transition point, v, < 0 and the instabilities are nearly

43 This is similar to a group of water waves triggered by a localized perturbation, e.g., by a stone
thrown at the water surface.

44 This dispersion has the same unit, order of magnitude (100m? /s), and effect, as the diffusion
terms of some macroscopic models.
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always of an upstream convective nature. Finally, if the model parameter settings im-
ply linear instabilities on the left-hand side of the fundamental diagram (“‘dense” but
technically free traffic flow, v, > 0), Eq. (I6.137) allows for convective downstream
instabilities, similarly to the original hydrodynamic systems where the concept of
convective instability comes from. However, unlike the upstream type, downstream
convective instabilities are not robust with respect to nonlinear effects: Downstream
propagating growing waves reverse their propagation direction once nonlinearities
kick in so the system effectively becomes absolutely unstable (cf. Fig. [[6.3). This
reversal, also called the boomerang effect can also be observed in traffic data (cf.
Fig. 21.4). We conclude that, unlike upstream convective instabilities, downstream
convective instabilities are not relevant for traffic flow dynamics.

Signal velocities. The signal velocities are defined as the slopes of rays x = ¢y in
spacetime along which the linear amplitude of instabilities triggered by a localized
and instantaneous perturbation at x =t = 0 neither grows nor shrinks. Generally,
there are two such velocities representing the motion of the two boundaries of the
instability region. In Fig.[16.4] these boundaries are indicated by solid black lines
In order to extract the signal velocities from the perturbation field U (x,?), we
consider the amplitude of U (x,t) along rays x = ¢t and determine ¢, such that the
growth of the amplitude along this ray is equal to zero. This means, we replace
X = ¢yt in the expression for U(x,r) and set the real part of its exponent

equal to zero:
(vg — c)? (vg — cs)?
c)—Re| ———— | =00— (| —=—————]=0
0 © (2(i60kk — Gkk) 0 2D,

For oy > 0 (i.e., traffic flow is string unstable which we require anyway), this leads
to two signal velocities,

cf = vy +/2Dy0y. (16.138)

From this relation, we learn the following:

* The center of the region of significantly perturbed traffic flow propagates with
the group velocity.

* The perturbed region grows spatially at a constant rate 2+/2D;0y.

* As expected, the spatial growth rate increases with the overall level of instability
op and with the effective dispersion coefficient D5.

» The special case c; = 0 leads us to the threshold condition 6y = vﬁ /(2D,) be-
tween absolute and convective instability which agrees with (16.137).

The latter point indicates that signal velocities are related to convective instability.
Moreover, they provide an intuitive, and yet mathematically stringent, approach to
distinguish between the upstream and downstream types of convective instability:

absolutely string unstable g <0<ct
traffic flow is { upstream convectively unstable ¢y < 0,cf <0 (16.139)
downstream convectively unstable ¢ > 0,¢ > 0.
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The upstream type of convective instability (Fig. [16.4] left) is often observed in the
traffic flow context while the downstream type is related to the hydrodynamic con-
text where the very concept of convective instability originates.

16.7 Nonlinear Instability and the Stability Diagram

The analytical investigation of the previous sections refer to small perturbations,
i.e., to linear instability. Few analytical results are available for large-amplitude
perturbations or fully developed traffic waves Instead, one investigates nonlin-
ear effects directly by simulations of well-defined systems that are as simple as
possible. The most popular of such toy systems is a closed single-lane ring road
populated which identical drivers and vehicles P In order to avoid finite-size effects,
the system should contain more than 500 vehicles. As a further abstraction, one can
also consider a ring road with a circumference tending to infinity or, equivalently,
an infinitely extended homogeneous road. The only control parameter is the global
(average) density p.. By simulating the qualitative system dynamics in the full range
[0, pmax] of possible values for the control parameter, one obtains a stability diagram.

We emphasize that a ring road does not represent a realistic abstraction of real
road networks: Real road networks are open, so the inflow (traffic demand) rather
than the density acts as control parameter. Furthermore, bottlenecks are missing
on the idealized ring road. Nevertheless, their investigation allows us to draw far-
reaching conclusions on more realistic open systems with bottlenecks. A big advan-
tage of stability diagrams derived from ring roads is that they reflect the dynamical
properties of a given model-parameter combination independently of the properties
of the road network, or the traffic state.

To obtain stability diagrams as that of Fig. [6.17(a), (b), or (d), we scan the
whole range of global densities p, € [0, Pmax|- For a given global density, we simu-
late two scenarios: One is initialized with a very small perturbation, and one with the
maximum possible perturbation. Instead of the “linear” scenario initialized with the
small perturbation, one could also use the analytical results. However, simulating
them represents a good combined test of the simulator code, and of the approxi-
mations and assumptions made during the analytical derivations. For each scenario,
we check whether the initial perturbation dissolves, or evolves into persistent traffic
waves. Generally, the resulting stability diagram is subdivided into the following
regions:

* Absolute stability for global densities p, below the lower nonlinear threshold pj.

45 There is a large body of literature proposing and investigating solitary nonlinear waves which
can be investigated analytically. However, the conditions to derive equations for such waves (e.g.,
a modified Korteweg-de-Vries equation) are extremely restrictive and nearly never satisfied in real
traffic situations.

46 A ring road must not be confused with a roundabout which, in contrast to the former, represents
a comparatively complex network node.
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* Metastability in a range p; < p, < p» between the lower nonlinear and linear
thresholds. In this range, sufficiently small initial perturbations eventually dis-
solve while higher-amplitude perturbations develop to persistent traffic waves
(Fig. see also Fig.[16.8).

* Absolute linear instability in a range p2» < p, < Pey-

» Convective linear instability in the range pcy < p, < p3

» Convective metastability in the range p3 < p, < p4 between the upper linear and
nonlinear density thresholds.

* And absolute instability for p, > ps.

Which subset of the above stability types is actually realized when scanning the
global density depends on the model-parameter combination. Since this determines
the qualitative behavior of congested states in real open road networks (and in partic-
ular whether this behavior is realistic or not), the most relevant subsets are attributed
to stability classes that will be discussed in the next section.

p [1/km] p [1/km]
29 100
28
27 30 50 30

26

25

- 2 t [min] - - t [min]
0 -2

X [km] 4 X [km] 0 >

Fig. 16.16 Metastable traffic flow on a ring road with the global density p = 26 veh/km for IDM
parameters as in Fig.[T6.17(d). Small perturbations dissolve (left) while a larger initial perturbation
develops to a persistent traffic wave propagating around the ring road (right). Notice the different
scales of the z-axes.

16.8 Stability Classes

While the density regions for the different instability types appear (with few excep-
tions) always in the order p; < py < pey < p3 < P4§ not all density regions are
realized, in general. Particularly, there may be no restabilization for high densities

47 Strictly speaking, convective instability is only well-defined in an infinite or open system. How-
ever, for practical purposes, the circumference of the ring must be sufficiently large such that no
vehicle drives around the complete ring during the simulation time.

48 For rare combinations of models and parameters, we obtain a region of absolute instability em-
bedded on both sides by regions of convective downstream and upstream instabilities, respectively.
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(Fig.[16.17)(a)), no absolute instability (p; = pev, Fig.[[6.17(a), (b)), or no instability
at all (p1 = pa = Pmax)- In principle, all ranges apart from the first one (p < p;) may
vanish independently from each other. It is hard, however, to find model-parameter
combinations showing metastable regimes but no linear instability at any density.

Analyzing real open systems with bottlenecks, it turns out that the qualitative
spatiotemporal behavior, i.e., the set of possible congestion patterns, depends on
only a few combinations of existing regimes. Additionally, the relative position of
the thresholds with respect to the density px at capacity (the density where the
maximum flow is observed) plays an essential role. This leads to the definition of
the following stability classes:

Class 1a: When increasing the density, traffic flow becomes linearly unstable for
densities corresponding to dense but technically yet free traffic. Furthermore, it re-
mains unstable for all higher densities: p; < p2» < Pk, P3 = P4 = Pmax- Since the
propagation velocity v, is O for a steady-state density p, ~ px, Equation
implies that this class includes density ranges of absolute instability. Typically, the
instability remains absolute up to moderately congested traffic and becomes con-
vective for severe congestions near the maximum density.

Class 1b: Traffic flow restabilizes for high densities, i.e., traffic flow becomes
smoothly creeping rather than oscillatory if severely congested@

Class 2a: Only congested traffic flow (on the “right-hand side” of the fundamental
diagram) can become unstable, and there is no restabilization: p, > pk, p3 = P4 =
Pmax- 1ypically, the instability is always of a convective nature. However, a small
range of absolutely unstable traffic is possible for congested traffic of comparatively
low density.

Class 2b: As Class 2a, but with restabilization, p3 < Pmax-

Class 3: Absolute stability everywhere, p; = Pmax-
Comparing the patterns simulated in realistic open systems with observations (cf.
Chapter 1)), we conclude the following:

Realistic model-parameter combinations for highway traffic flow correspond
to stability classes 2a or 2b.

Depending on the parameter set, one and the same model can belong to different
stability classes. Figure shows that the IDM can assume all classes. With
the help of this model, we will now discuss the influencing factors leading to the
different classes.

49 We are aware that, in vehicles with manual transmission, it is hard to drive smoothly at very low
speeds where the clutch must be operated even when driving in first gear. While this is considered
in sub-microscopic models, it is ignored for the models considered here. In effect, the difficulty
to drive very slowly leads to persistent noise at a sub-microscopic level. However, if traffic flow
is stable at a microscopic or macroscopic level, these perturbations are not collectively amplified,
i.e., traffic data show strong fluctuations but no deterministic signal.
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Fig. 16.17 (c) Class diagram of the IDM as a function of the time gap T and acceleration a. The
other IDM parameters and the vehicle length 5m are the same as in Fig. (a), (b), (d) sta-
bility diagrams for three points of the class diagram corresponding to the classes 2a, 2b, and 1b,
respectively. (e) class diagram for city traffic (v reduced to 50 km/h, everything else unchanged).

Agility. Agility or responsiveness corresponds to the acceleration parameter a.
Starting with low agility and increasing the agility by increasing the parameter a,
the stability class changes from Class 1 (instabilities are possible even for dense
but uncongested traffic), to Class 2 (only congested traffic can become unstable) to
Class 3 (no instability anywhere). Notice that in some other microscopic or macro-
scopic models, the agility corresponds to the inverse of the speed adaptation time 7.

Time gap. The capacity of traffic flow (maximum flow) increases with decreasing
time gap 7T in car-following mode. Simultaneously, reducing 7 also reduces the
time margin of the drivers to react to changing situations, so traffic flow generally
becomes more unstable. Remarkably, this does not influence the transition between
Classes 1 and 2 which essentially is determined by the acceleration a.

Anticipation. By scaling the IDM appropriately (cf. Problem[16.8]), one can show
that the dynamics, and particularly the stability class, remains unchanged when si-
multaneously
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* increasing the anticipation by decreasing the comfortable deceleration b by a
factor fj < 1,

¢ decreasing the agility by reducing a by a factor of f;,

* increasing the time gap T by a factor 1/+/f,

* decreasing the desired speed v by a factor of v/fj,, and

* leaving so unchanged.

As expected, this means that a decrease of agility is compensated for by increasing
the responsiveness. Moreover, exact compensation is reached if the ratio a/b re-
mains unchanged. Remarkably, the restabilization properties (subclasses 1a, 2a vs.
1b, 2b, 3) do not depend on the anticipation at all. To see this, we notice that the
IDM corresponds to stability subclass a (1a, or 2a) if and only if

50
(and to one of the classes 1b, 2b, or 3, otherwise), and that this distinction criterion
does not contain b as influencing factor.

16.9 Short-Wavelength Collective Instabilities

When discussing the collective instabilities discussed in the Sections [16.4] — [16.8]
we have assumed long-wavelength instabilities, i.e., the first instability is always
one with respect to waves whose wave number tends to zero and the associated
wavelength tends to infinity. Mathematically, it can be shown that this is true for all
time-continuous car-following models without explicit reaction time formulated by
coupled ordinary differential equations, and for all macroscopic local second-order
models, i.e., formulated by partial differential equations for the density and speed
fields.

However, many popular models do not belong to one of these mathematical
classes. Examples include iterated coupled maps, time-continuous car-following
models with reaction times, or nonlocal macroscopic models. Figure [[6.18] shows
the simultaneous occurrence of long-wavelength and short-wavelength collective
instabilities for the IDM with an explicit delay by a reaction time 7, = 1.2s (but
no other human driving aspect of Chapter [13| added). We observe that the short-
wavelength instabilities propagate faster than the long-wavelength instabilities, so
that they “collide” into each other. However, neither these collisions nor the propa-
gation velocity of the short-wavelength modes (about —30km/h) are realistic. We
conclude that short-wavelength instabilities should not occur for realistic model-
parameter combinations.

Finally, we emphasize that, for realistic parameters, the first instability of models
including potential short-wavelength instabilities is generally of the long-wavelength
type. Since it is not possible to test or prove this mathematically, simulations are
necessary to check this property.
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Fig. 16.18 Simultaneous appearance of long-wave and short-wave instabilities in the IDM with
reaction time 7, = 1.2 for initially steady-state traffic at p, = 30km~! with a small perturbation.
The IDM parameters are vo = 120km/h, T = 1.5s,a = lm/sz, b= 1.3m/s2, so = 2m, and the
vehicle length / = 5m.

Problems

16.1. Characterizing the Type of Instability

Consider the dynamics schematically shown in Fig. [16.1] Is it a local or string in-
stability? If the latter is true: Is the instability absolute or convective, linear or non-
linear?

16.2. Propagation Velocity of Traffic Waves in Microscopic Models

Show that the long-wavelength limit (I6.37) of the microscopic propagation velocity
corresponds macroscopically to the gradient & = Q',(p) of the fundamental diagram.
To this purpose, scale the microscopic propagation velocity to dimensional physical
units, and transform it from the system comoving with the vehicles to a road-based
fixed system. Finally, express the microscopic quantities in terms of macroscopic
variables.

16.3. Instability Limits for the Full Velocity Difference Model

Consider the acceleration equation of the FVDM with a speed adaptation
time T = 5s and a triangular fundamental diagram given by the microscopic relation
Vve(s) = min(s/T,vp), T = ls. What is the minimum value of the sensitivity ¥ to
speed differences to ensure (i) local stability, (ii) no (damped) oscillations when a
single vehicle follows a leader with at a given speed profile, (iii) string stability?

16.4. Stability Properties of the Optimal Velocity Model Compared to Payne’s
Model

Consider the OVM and Payne’s model for general, but equivalent, optimal-velocity
(steady-state) relations and show that the conditions for collective (string or flow)



404 16 Stability Analysis

stability of both models are equivalent. Hint: Find the macroscopic equivalent V,(p)
of the microscopic steady-state relation v,(s), derive a relation between the deriv-
atives v.,(s) and V/(p), express the OVM stability condition in macroscopic terms,
and compare it with the condition for Payne’s model.

16.5. OVM with “Pushing” from Behind

Consider the model and show that, for A = 0.5, the OV gradient V'(s)
at neutral stability (boundary between string stability and instability) becomes six
times as large as that for the normal OVM greatly increasing stability. Now consider
the triangular fundamental relation vop(s) = min((s —s0)/7,vo) and show that this
model still leads to collisions for any platoon of > 3 vehicles if the leader stops
and A > (14 voT /so)~! which typically is the case already for values as small as
A =0.05.

16.6. Flow Instability in Payne’s Model and in the Kerner-Konhéiuser Model

Consider Payne’s model and the Kerner-Konhéduser model with a triangular funda-
mental diagram Q.(p) = min(Vop,1/T (1 — lgp)) and the parameters leir = 6m,
Vo = 144km/h and T = 1.1s. (i) Show that Payne’s model is unconditionally lin-
early stable if T < 7/2, and flow unstable in the congested regions, otherwise.
(ii) For the Kerner-Konhéduser model, determine the parameter c(% such that this
model is string unstable in the density range p € [20vehicles/km,50 vehicles/km].

16.7. Flow Instability of the GKT Model

Consider sufficiently congested traffic such that the speed variation coefficient
oy /v = +/0(Pmax) can be considered as constant. Show that, in the local limit of
zero anticipation distance (Y = s, = 0), the GKT model is unconditionally unstable
in this situation for all reasonable parameter values. Furthermore, show that antic-
ipation stabilizes traffic flow by deriving the approximate Condition (I6.131) for
densities near the maximum density.

16.8. IDM Stability Class Diagram for Other Parameter Values

Calculate the stability class diagram as in Fig. [[6.17(c) but assume a comfortable
deceleration b* = 2m/s? instead of b = 1.5m/s%, and v = 139km/h instead of
120 km/h. Is it possible to use this diagram without recalculating anything, just by
scaling the axes appropriately?

Hint: Formulate the IDM model equations in scaled units by scaling time in
multiples of the unit time 4/so/b (of the order of 1 s), and space in multiples of the
minimum gap sg. Show that the scaled model depends on only three dimensionless
parameters

O L
\/bSQ’ 7[?’ a SO’

and on the scaled vehicle length fveh = lyen/so. Now use the fact that all dynamic
properties (and, in particular, the stability class) depend on the scaled parameters
and the scaled vehicle length, only. Find appropriate scalings for the two axes of the
class diagram.

Vo =
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16.9. Fundamental Diagram with Hysteresis

Given are the following characteristics of highway traffic flow: Average vehicle
length [ =4.67 m, average gap in car-following situations s = so+v7T where so =2m
and T = 1.6s, average free-flow speed 120 km/h, and critical density at traffic break-
down (free — congested) p, = 20 veh/km per lane. From these data it follows that
two values of traffic flow are possible in a certain density range.

1. At which traffic flow does a breakdown occur, i.e., where does the free branch
of the fundamental diagram end?

2. Determine the “congested branch” of the fundamental diagram and the density
at which it intersects with the free branch. For which density range can free and
congested traffic exist simultaneously?

3. The outflowing region of congestions is characterized by the intersection (Pout, Qout)
of the free and congested branches of the fundamental diagram. Indicate poy
and calculate Qqy. Also calculate the capacity drop as the difference between
the maximum flow of free traffic and Qo

4. Make a graph of the fundamental diagram showing its mirrored A-shape.
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Solutions to the Problems

Problems of Chapter 2]

[2.11 Edie’s Definitions

1. The depicted spatiotemporal area is A = 3,200 ms. The total time of the trajec-
tories spent inside A is given by

10
' =40s+4s ) j=40+4-555 =260s.
j=1

The total distance covered by the trajectories with parts inside A are given by

10
X'=35m+5m) j=310m.
Jj=1

Hence, Edie’s density, flow, and average speed are given by

tot tot

t
Praic = —- = 81.3veh/km,  Ope = % = 0.0969 veh/s,

yEdie _ QBdie g0
PEdie

2. Macroscopic flow at x = 40m inside A (counting the vehicle passing at t = 0
but not the one stopping at x = 40m):

_ 7veh
T 40s

[0) =0.175veh/s.

The time mean speed V in A is near the maximum speed of 10 m/s since the
stopped vehicle did not yet pass, i.e., it does not count. Hence, the density esti-
mated by temporal quantities is given by

649
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Q

= 17.5veh/km,
Vv

ﬁ =
which is less than 25% of Edie’s density.
3. Att = 20s, n = 6 vehicles are inside A, hence p = 75veh/km, near Edie’s
density. The space-average speed is given by

V.~ 2-10m/s
n

=3.33m/s.

4. The situation is not stationary, so the condition for V; = VH is not satisfied.
In fact, the temporal harmonic mean VH at x = 40m is near 10 m/s without
counting the vehicle stopping at x = 40m (as in part 2), and undefined when
including it.

Problems of Chapter 3|

3.1 Analysis of Empirical Trajectory Data

1. Flow, density, and speed. Using the spatiotemporal region [10s,30s] x [20m, 80m]
suggested for a representative free-flow situation, we obtain by trajectory counting:

11veh 3veh
eree = W = 1,980Veh/h, Prfree = % = 60Veh/km

The speed can be deduced either from the gradient of the trajectories or from the
hydrodynamic relation Q/p:

adi 60
ot S0M g3 e, 28 = 2% _ 39 6kam i,
S Prree

This discrepancy is tolerable in view of the reading accuracy (one may also count
12 vehicles in 20, yielding Q = 2,160veh/h and thus p = 43.2km/h). For con-
gested traffic, we use, again, the suggested spatiotemporal region [50s,60s] x
[40m, 100m] and obtain analogously

2veh 6veh
Qcong = W = 720Veh/h, Pcong = m = l,OOOVCh/knl,
0
Vi = =€ = 7.2km/h.
cong

2. Propagation velocity. The stop-and-go wave can be identified by the spatiotem-
poral region with nearly horizontal trajectories. First, we observe that, in the di-
agram, the gradient of the (essentially parallel) upstream and downstream wave
boundaries are negative, i.e., the wave propagates against the direction of traffic.
To determine the propagation velocity, we estimate from the diagram
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140m
cr ~60-33)s =-52m/s =—19km/h.

3. Travel time increase. Without being obstructed by the traffic wave, the consid-
ered vehicle entering at = 50s into the investigated road section (x = 0) would
leave the section (x = L = 200m) after about 165s. This can be deduced either by
linearly extrapolating the first seconds of the trajectory, or by the quotient L/ V.
The actual vehicle leaves the investigated region at t = 86s. Thus, the delay imposed
by this traffic wave on the vehicle is 20s.

4. Lane-changing rate. By counting all lane changes entering and leaving the con-
sidered lane in the spatiotemporal region [0s,80s] x [0m, 140m], i.e., trajectories
beginning or ending inside this region!], we obtain the lane-changing rate by

__ 6. changes
"~ 805 140m

Trajectory Data of “Obstructed” Traffic Flow

changes changes

kmh

= 0.00054 ~ 1,900

1. The trajectory data shows a queue at a traffic light. The horizontal bar marks the
position of the traffic light and the duration of the red light phase.

2. Flow Qj, =5 trajectories per 20 s = 0.25 veh/s = 900 veh/h.

3. Following the trajectory which starts at x = —80m, t = —16s and which ends
at (x,7) = (80m,0s), we get the speed

160m

Vin =
The density is read off the diagram as one trajectory per 40 m or is calculated
using p = Q/v. Either way yields p = 25 veh/km.

4. Density in the congested area: 8 horizontal trajectories per 40m = Pjym =
200 veh/km.

5. Outflow after the red light turns green: The best way is to count the number of
lines within a 20 s interval above the blue dots marking the end of the acceler-
ation phase, giving 10 lines per 20's and thus Qqy = 0.5veh/s = 1,800veh/h.
The speed is the same as in free traffic (the trajectories are parallel to those
further upstream), i.e., V = 36km/h. The density is obtained again by count-
ing trajectories (two lines per 40 m) or via the hydrodynamic relation, yielding
p =50veh/km.

6. Propagation velocities of the fronts can be read off the chart as the gradient
of the front lines (marked by the dots) or using the continuity equation (cf.
Chapter[B):

! Outside this region, a positive bias is unavoidable because real lane changes cannot be distin-
guished from the begin/end of recorded trajectories.
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Solutions to the Problems

AQ  —900veh/h
free — congested:  v," = Ap _ 175veh/km
down

A 1,800veh/h
congested — free: v,™"" = Tg — _alSOV;";l/im

= —5.17km/h,
= —12km/h.

Without the red light the vehicle entering at x = —80m and t = 20s would have
reached the “end” (upper border) of the diagram (x = 100m) at f.,qg = 38s. De
facto, it arrives at x = 100m at time ¢ = 695, thus delayed by 31 s.

The braking distance is s, = 25m, while the distance covered during the accel-
eration phase is s, = 50m. Thus

V2 v?

% m/s°, a 2. m/s

Alternatively, we can calculate the braking distance using the definition of the
acceleration and the duration At of the acceleration/deceleration:
Av. —10m/s _Av_ 10m/s

TR omys?, a=S0 = — 1m/s?.
m/s”, a Ar 105 m/s

b= T " 1os

3.3 Trajectories of City Traffic

1.

Signalized intersections are expected to be a little bit downstream of the vehicles
stopping without a leader, i.e., at about x; = 50m and x, = 250m (and possibly
at x3 = 355m). The red phase starts when the first leader about to stop behind
the traffic light begins to decelerate and ends a little bit before the first vehicle
starts to accelerate (reaction time), i.e., 317s - 350s at x; and 317 s - 378 s at xp
(and 310s - 335 s at x3 but the red phase may have started earlier)

Beginning trajectories: lane changes 3-2 and 1-2; ending trajectories: lane
changes 2-3 and 2-1

Wave velocity (sequence of the first eight starting vehicles between 380s and

390s): w= =500 = _21.6km/h.

3.4 Bicycle Trajectory Data

1.

Shown is a moving traffic wave of stopped bicycles that is neither growing
nor shrinking, so outflow ~ inflow. Theoretically, the moving cyclists could be
in a maximum-flow state at the boundary between free and congested traffic.
However, in view of their close distance of about 4 m, this region is congested
as well.

Inside the “stop” region: pmax =24/40m =0.6 /m, Q =0, V = 0; in the regions
outside the jam, e.g., at r = 190s: p = 13/40m = 0.325 /m, Q = 13/40s =
0.325/s,V =0Q/p = Im/s.

Region A = 20s-10m = 200ms, ' = 6-20s, s0 Pggie = 120s/200ms =
0.6 /m.

w=—40m/27s ~ —1.5m/s.

Time gap T = (Ax—legr) /V = (1/p —1/Ppmax)/V = (3.08m—1.67m)/1m/s =
1.41s.
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Problems of Chapter 4

4.1 Map Matching

According to the problem statement, the vehicle can only be on road 1 with lateral
position y; =0, or on road 2 at y = 30m. Since the GNSS position ¥ is assumed to
be unbiased and Gaussian distributed with a standard deviation o = 10m, we have
the two conditional probability densitie]

o =zo(L). n0=1o(*2)

with the density of the standard normal distribution ¢ (z) e exp(—z2/2). Thus, the
conditional probabilities for the measuring event

E: “the GNSS position ¥ is in the range [§ — Ay/2,9+Ay/2]”

provided the true position is on road r; (y = y;) or on r, (y = y»), are given, for
sufficiently small Ay, by

P(E|r) = fi(§)Ay, P(E|r;) = f2(9)Ay
The small interval Ay is only introduced to avoid a “divided by zero” situation.

1. The desired probability P(ri|E) = P(y = y1|E) can be calculated using Bayes’

Theorem:
P(nlE) = )
_ P(E|ri)P(r1)
P(E|r)P(r1)+ P(E|r2)P(r2)
_ Ji()P(r1)
JiP)P(r1) + f2(9)P(r2)
exp(—2)

exp(—2)+exp(—1)

where we have used the non-informative priors P(r;) = P(ry) = 1/2. We con-
clude that, without any prior information, the best map matching is to road 2. It
will be correct in 82% of all cases.

2. The prior information that the density on road 1 is nine times higher than that
on road 2 means that, when blindly picking a vehicle, it is on road 1 in nine out
of ten cases, P(r;) = 0.9 and P(rp) = 1 — P(r;) = 0.1. Using the flow instead
of the density for estimating the priors would give a bias towards the road with
the faster speed (presumably road 1). Updating the priors in the second to last

2 As per convention, we denote random variables in uppercase letters (¥') and realizations (mea-
surements) in lowercase ().
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line of problem part 1 gives

B 0911 (%) B 0.9 exp(—2) B
P(nlE) = 0.9f1(9)+0.14(9) 0.9exp(—2)+0.lexp(—1) 67%.

With this prior information, there is now a two-thirds chance that mapping onto
road 1 is correct, although it is more distant to the GNSS position than road 2.
3. The best clues can be obtained from the fact of continuity: a car does not jump.
So, past position with nonambiguous map matching, or the position where the
device was switched off after the previous trip, are good bets. By using the
Hidden Markov approach, Sect. 3] transforms these clues into a formal model.

[.2] Floating-Car Data

GPS data provide space-time data points and anonymized IDs of the equipped vehi-
cles. We can obtain their trajectories by connecting the data points in a space-time
diagram (via a map-matching process). From the trajectories, we can directly obtain
the travel time and infer the instantaneous speed by taking the gradients. Low speeds
on a highway (e.g., 30 km/h) usually indicate a traffic jam. Since the data provide
spatiotemporal positions of the vehicles, we can deduce the location of congested
zones, including their upstream and downstream boundaries. With a sampling rate
of two per minute, the vehicle can cover 1 km and more between a data point in free
traffic. Fortunately, in congestions, the points are naturally closer and jam fronts are
resolved at a high spatial resolution whenever an equipped vehicle “floats” through.
The temporal resolution depends on the penetration level of probe vehicles. GNSS
measurements are only accurate to the order of 10 m and careful map-matching/error
checking is necessary to exclude, for example, stopped vehicles on the shoulder or
vehicles on a parallel road (see Problem [£.1]). Therefore, GNSS data do not reveal
lane information, nor information on lane changes. If the percentage of probe ve-
hicles providing positional data is low, variable, and unknown, we can not deduce
extensive quantities like traffic density and flow from this type of data. To wrap it
up: (1): yes, (2): no, (3): no, (4): no, (5): yes, (6): yes, (7): yes.

Relative Errors of Probe-Based Flow Estimations

1. For a Poisson distributed variable, the expectation value and the variance are
given by p, so that the relative error is 6n = 1/\/if = 1/4/n, and, together
with Eq. @D, 6n = 1/+/qAt. With the partial volumes ¢ = 0Q the relative
error is given by 6n = 1//0QAt. On the one hand it is attractive to report
flow estimates within short aggregation intervals. On the other hand, the relative
errors become smaller with longer aggregation intervals as more probe vehicles
are observed. FCD-based flow estimates work best for high penetration rates
and high traffic flows, e.g., on multi-lane highways and/or at times of heavy
traffic.

2. With 6 =0.1 and At =0.25h, we obtain 6n = 14% for 0 =2,000 /h, dn ~ 45%
for 200 /h, and én ~ 8% for 6,000 /h.
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3. With At = 1/(6Q8n?) and the values from above the aggregation interval

needed for a relative error of 10% is 30 min. A doubling of the penetration
level O halves the value.

[4.4] Traffic State Estimation Using Floating-Car Data

1.

With a penetration level 8 = 1% of floating cars, the partial density over all four
lanes as a function of the one-lane density p is given by

Prc = 46p,

so pr¢ = 0.8veh/km for the uncongested, and p{¢ = 3veh/km for the con-

gested regions, respectively.

On average, there are 4km - 3 veh/km = 12 vehicles inside the congestion.

If the traffic jam fronts are stationary, the flow through the jam fronts free —
congested and congested — free is equal to Q' = 6,000 veh /h. If, furthermore,
the average speed of the floating cars is the same as that of all vehicles, the
partial flow is given by pQ'® = 60veh/ hB So, we have an average rate of one
update of the jam-front positions and the segment travel time per minute. We
conclude that even for a very small penetration level of 1%, we have a sufficient
update rate.

[.3] Analysis of Extended Floating-Car Data

1.

Here, the episode ¢ > 2255 is most revealing since the leader already shows
oscillations. While the speed amplitude (from the local minimum to the local
maximum) of the leader is on average about 3 m/s, that of the follower increases
to about 5 m/s for the last follower. Hence, there is evidence for flow instabilities
(more precisely, the following behavior is locally stable but string unstable as
described in more detail in Sections [16.3] and [16.4)).

The maxima and minima of the speed curves of the leader and the last follower
are shifted by about 5s. Thus, the average delay in an individual follower’s
response is of the order of 1.5s to 2 A

Between 1 ~ 214 s and 218s, the speed drops from about 11 m/s to 1 m/s corre-
sponding to a maximum deceleration of » = 2.5m/s?. The maximum accelera-
tion (between ¢ =~ 222 s and 224 s) has the same order.

The last driver (vehicle 4) follows most closely with time gaps s;/v; strongly
varying but generally below 1s. The shortest minimum gap (about 1 m), how-
ever, is observed for the driver of vehicle 3.

3 If, for example, the average floating car speeds are lower, the partial flow would be lower as well
by virtue of Edie’s relation (2.8).

# This is not necessarily due to reaction times. In Chapters[[Tland[[2] we will see that even models
with zero reaction times display such a delay.
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Problems of Chapter 3]

[5.1] Data Aggregation at a Cross-Section

1. Flow and speed. With an aggregation interval At = 30s and n; = 6, np =4
measured vehicles on lanes 1 and 2, respectively, the flow and time mean speed on
the two lanes are

0 = % —0.2veh/s = 720veh/h, Q)= % = 0.133veh/s = 480 veh/h,
1 1

Vi=—Y vi;=258m/s, Vo=—Y v5i=340m/s.
n i ny i

2. Density. When assuming zero correlations between speeds and time headways,
the covariance Cov(v;,Ar;) = 0. With Eq. (5.23), this means that calculating the true
(spatial) densities by Q/V using the arithmetic (time) mean speed gives no bias:

2 7.74veh/km, pp= L _ 3.92veh/km.
Vi Va

1

p1

3. Both lanes combined. Density and flow are extensive quantities increasing with
the number of vehicles. Therefore, building the total quantities by simple summation
over the lanes makes sense:

p* =pi+pr=11.66veh/km, Q' =Q;+ Q0> =1,200veh/h.

Since speed is an intensive quantity (it does not increase with the vehicle number),
summation over lanes makes no sense. Instead, we define the effective aggregated
speed by requiring the hydrodynamic relation to be valid for total flow and total
density as well:

_ Qtot _ P1V1 +P2V2 _ Qtot
ptot ptot Ql/Vl + Q2/V2

By its derivation from the hydrodynamic relation, this effective speed is the space
mean speed rather than the time mean speed measured directly by the detectors.
We notice that the effective speed is simultaneously the arithmetic mean weighted
with the densities, and the harmonic mean weighted with the flows. However, the
weighting with the densities requires that the density estimates itself are known
without bias. This is the case here but not generally. Since flows can always be
estimated without systematic errors from stationary detectors, the harmonic mean
weighted with the flows is preferable.

=28.5m/s = 102.9km/h.

4. Fraction of trucks. Two out of six (33%) are in the right lane, none in the left,
two out of ten (20%) total. Notice again that the given percentages are the fraction
of trucks passing a fixed location (time mean). In the same situation, we expect the
fraction of trucks observed by a “snapshot” of a road section at a fixed time (space
mean) to be higher, at least if trucks are generally slower than cars.
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Determining Macroscopic Quantities from Single-Vehicle Data

The distance headway Ax; = 60m is constant on both lanes. All vehicles are of the
same length / = 5m and all vehicles on a given lane [ (left) or r (right) have the
same speed v! = 144km/h = 40m/s and v} = 72km/h = 20m/s, respectively.

1. Time gap / headway. The headways At; = Ax;/v; are

60m 155, Aff 60m

" 20m/s

' 40m/s
The time gaps T; are equal to the headway minus the time needed to cover a distance

equal to the length of the leading vehicle, T; = At; — éi:l] . Since all vehicle lengths
are equal, this results in

60m— 5 60m—5
S B T P L ) N

! 20m/s

' 40m/s
2. Macroscopic quantities. We assume an aggregation time interval Ar = 60s.
However, due to the stationary situation considered here, any other aggregation in-
terval will lead to the same results. Directly from the definitions of flow, occupancy,
and time-mean speed, we obtain for each lane

1 1 11
1
= — = —— =2,400veh/h - = = .
0 Ad T Tss 400w /h, 0 AT 3 1,200veh/h
0.125 0.25

1 = — = T = — =
0= =5 =0.083=83%, 0" =<5 =0083=83%.
V! = 144km/h, V' =72km/h.

Due to the homogeneous traffic situation, the arithmetic and harmonic time-mean
speed are the same and directly given by the speed of the individual vehicles.

Totals and averages of both lanes. As already discussed in Problem [5.1] summing
over the lanes to obtain a total quantity makes only sense for extensive quantities
(Q, p) but not for the intensive ones (V, 0).

Flow:

AN  AN'+AN' Ouot

Otot Y Y. 3,600veh/h, Q 2 ,800veh/
Occupancy:
0 =0"=0"=0.083.
Arithmetic time mean speed:
1 40-40m/s+20-20m/s
V=— = = 120km/h.
AN ZV 60 m/

Harmonic time mean speed:
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AN 60

= T 40 20
L1/vi 40m/s + 20m/s

Vu

= 108km/h.

We observe that the arithmetic mean is larger than the harmonic mean.

3. Which mean? In traffic flow, there are four sensible ways to average, consisting
of the four combinations of (i) one of two physical ways (time mean and space
mean), (ii) one of two mathematical ways (arithmetic and harmonic).

* Time mean means averaging at a fixed location over some time interval as done
by stationary detectors.

* Space mean means averaging at a fixed time over some space interval (road sec-
tion), e.g., when making a snapshot of the traffic flow.

For the space mean, we have (cf. the previous problem)

v PVitpVs o
p 01/Vi+Q02/Va
while, for the time mean, we simply have
Vo 01Vi+ Vs
- Qot

The time mean is generally larger than the space mean because, at the same partial
densities, the class of faster vehicles passes the cross-section more often within the
aggregation interval than the vehicles of the slower class do. The arithmetic average
is generally larger than the harmonic average which can be shown for any data. Only
for the trivial case of identical data, both averages agree.

Here, p; = p2 but Q1 # Q», so the simple (not weighted) arithmetic average over
lanes applies for the space mean speed.

4. Speed variance between lanes. Because of identical speeds on either lane, the
total variance of the speeds in the left and right lane is the same as the inter-lane
variance sought after:

oy = E(vi—E(v))?
1
= (4040 — 33.3]% +20[20 — 33.3]?)
— 88.9m?/s”.

Total speed variance. We divide the speed variance

Oy = NZ(W—V)Q

into two sums over the left and right lane, respectively:
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Y 2 & 2
GV:N Z (Vil—V) + Z (V,’Z—V) .
= =
I3 5]
Now we expand the two squares:

(viy =V)? = (vi, =Vi+Vi =V)? = (v;, =V1)* +2(vi, = V1) (Vi = V) + (V1 = V)2,

where V/ is the average over lane 1. We proceed analogously for (v;, — V)?. Inserting
this into the expression for 0"% and recognizing that

Y i, -vi)vi—=v)=0, Y (v, —=Va)(Va—V)=0

i i

and N
0% = ¥ (v, ~W)?
LN i1=1 I
and similarly for 632, we obtain
N N>
o = ~ (o7, + (Vi —V)?] +5 (o7, + (Va—V)?].

With p; = N; /N and p, = N,/N =1 — p;, we get the formula of the problem state-
ment. If p; = p, = 1/2 we have V = (V| +V5)/2 and thus

1
of = 5 [0y, +07,] +

(Vi —Vp)?
TR

Notice that this mathematical relation can be applied to both space mean and time
mean averages.

Analytical Fundamental Diagram
We have to distinguish between free and congested traffic.

Free traffic.
viree(p) =y = const.

Flow by using the hydrodynamic relation:

Q"(p) = pV™*(p) =pVo.

Congested traffic. The speed-dependent equilibrium gap between vehicles, s(v) =
so + vT, leads to the gap-dependent equilibrium speed V"8(s):
s — S0

veong(s) = 220

Using the definition of the density p, we replace the gap s:
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number of vehicles

road length
one vehicle

one distance headway (front-to-front distance)
1 1

vehicle length + gap (bumper-to-bumper distance) 1 +s

Thus s(p) = % — 1 and therefore

— 11
VerE(p) = ’ TSO =7 L) —(H‘SO)] :

The flow-density relation is obtained again by the hydrodynamic relation:

Q"¢ (p) = pVrE(p) = % [1—p(l+s50)].

The sum g = [ 4 5o of vehicle length and minimum gap can be interpreted as an
effective vehicle length (typically 7 m in city traffic, somewhat more on highways).
Accordingly, the maximum density is

1 _ 1
[+ s0 o leff.

Pmax =

To obtain the critical density pc separating free and congested traffic, we determine
the point where the free and congested branches of the fundamental diagram inter-
sect:

1

cong _ (free —1_ _
0°"(p) = 0™(p) = pWoT =1—p(l+s0) = pc VT Tl

This is the “tip” of the triangular fundamental diagram, and the corresponding flow
is the capacity C (the maximum possible flow):

1 1
C=0""(pc) = 0" (pc) = = (1 + leff) | v
Vol

The capacity C is of the order of (yet always less than) the inverse time gap 7. The
lower the free speed Vj, the more pronounced the discrepancy between the “ideal”
capacity 1/T and the actual value.

Given the numeric values stated in the problem, we obtain the following values
for Pmax, Pc, and C:

Pmax = 143veh/km, pc =16.6veh/km, C =0.552veh/s = 1,990veh/h.

5.4 Estimating the Velocity of Traffic Waves
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1. We can use the minima of the speeds even if they are biased provided that the
relation between the real and biased speed is strictly monotonous (which is the
case) since we are interested in the argument of the minimum (the time) which
is unchanged in this case.

2. Taking the first speed minima (with the difference DO7-D09 marked in the fig-
ure of the problem statement) of detector pairs, we obtain

* D07-D08: Ax = —1,000m, At =210s, w = Ax/At = —4.76m/s
* D08-D09: Ax = —1,000m, At =240s, w = Ax/At = —4.17m/s
* DO07-D09: Ax = —2,000m, At = 450s, w = Ax/At = —4.44m/s

The observations are around —4.5m/s ~ —16km/h.

3. The errors are rather large because of the short distances between the detectors
and the aggregation time interval of 1 min. Graphically estimating the slope of
the traffic waves in spatiotemporal plots such as Fig.[5.11]or analyzing the cross
correlation function (3.31)) gives more precise results.

Fundamental Diagram Estimated from Stationary Detector Data
The free velocity can be read off the speed-density diagram (at low densities):

vife — 125km/h, VI%¢ = 110km/h.

(Dutch police is very rigorous in enforcing speed limits and uses automated systems
to do so. This explains why few people drive faster than 110 km/h.)

The flow-density diagram immediately shows the maximum density (the density
where the flow data drop to zero at the right-hand side) and the capacity (maximum
flow):

Pas. =80veh/km, pie* =110veh/km,
Cas = 1,700veh/h, Cag = 2,400veh/h.

The headways can be calculated by solving the capacity equation (1) for T,

1— LetC 1—-C€
T = Voo VoPmax

C C ’

and thus
TAg =191 S, TA9 =1.27s.

One cautionary note is in order: If the data of the scatter plots are derived from
arithmetic time mean speeds via the relation p = Q/V (as it is the case here), the
density of congested traffic flow, and in the consequence 7', will be underestimated,
although not so drastically. To a lesser extent, this also applies to harmonic aver-
ages (cf. Fig.[3.13). In the Sections and[IZ7.4] we will learn about more robust
estimation methods based on propagation velocities.
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Problems of Chapter [6]

Reconstruction of the Traffic Situation Around an Accident

Part 1. In the space-time diagram below, thin dashed green lines mark confirmed
free traffic while all other information is visualized using thicker lines and different
colors. The respective information is denoted in the key. The signal “zero flow”
means “I do not know; either empty road or stopped traffic”.

12 T T T T
| FC1+FC2 free traffic ——
11 | FC2 jam ——
/ D1, zero flow
10 D2, zero flow 1
9 Mobile 1 jam) = ]
Mobile 2 (empty road O
8
7 o]
E 6
x
5
4
3 |
2
1
0

0 5 10 15 20 25 30 35 40 45 50 55 60
Minutes past 16:00 pm

Part 2. The information of the first floating car (FC1) tells us the speed in free
traffic, Viree = 10km/5 minutes = 120km/h. From the second floating car (FC2) we
know that an upstream jam front passes x = S5km at 4:19 pm.

The stationary detectors D1 at x = 4km and D2 at 8 km both report zero flows in
a certain time interval but this does not tell apart whether the road is maximally con-
gested or empty. However, we additionally know by the two mobile phone calls that
the road is fully congested at 5 km while it is empty at 7 km. The congestion at 5 km
is also consistent with the trajectory of the second floating car. Since downstream
jam fronts (transition jam — free traffic) are either stationary or propagate upstream
at velocity ¢ ~ —15km/h but never downstream (apart from the special case of a
moving bottleneck), we know that the missing vehicle counts of D1 are the con-
sequence of standing traffic while that of D2 reflect an empty road (at least when
ignoring the possibility that there might be another obstruction more downstream
causing a second jam).

With this information, we can estimate the motion of the upstream jam front.
Assuming a constant propagation velocity ¢"P, we determine this velocity from the
spatiotemporal points where detector D1 and the second floating car encounter con-
gestion, respectively:

—1km

up
cr = s
6 min

= —10km/h.
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The motion of this front is another strong evidence that D2 does not measure a
transition from free to fully congested traffic but from free traffic to no traffic at
all at x = 8km and r = 4:14 pm: Otherwise, the propagation velocity c"P would be
—4km/5min = —48km/h in this region which is not possible even if we do not
require c"P to be constant: The largest possible negative velocity c"P, realized under
conditions of maximum inflow against a full road block, is only insignificantly larger
in magnitude than |c%°""| ~ 15km/h.

Now we have enough information to determine location and time of the initial
road block (accident). Intersecting the line

t—25mi
x"P(t) = 4km+ ¢"Pt — 25 min) = 4km — % km/min

characterizing the upstream front with the trajectory xja5(¢) of the last vehicle that
made it past the accident location,

Xjast (1) = 8km 4 vo(f — 14min) = 8km + (¢ — 14 min) 2km/min
yields location and time of the road block:
Xcrash = OKm,  fopash = 4:13pm.

Part 3. After the accident site is cleared, the initially stationary downstream jam
front (fixed at the accident site) starts moving at the characteristic velocity ¢4°"" =
—15km/h = —1km/4min. Since the detector at x = 4km (D1) detects non-zero
traffic flow from 4:58 pm onwards, the front is described by

x9%0(1) = 4km + %% (1 — 58 min).

Obviously, the accident location (xcash = 6km) is cleared exactly at the time where
the moving downstream jam front crosses the accident site (cf. the figure), i.e., at
telear =4:50 pm.
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Dealing with Inconsistent Information
Using equal weights, V = %(Vl + V2), the error variance is

2:

1 5
o (6 +03) =~ (of +40f) = ~of,

4 4

assuming negligible systematic errors and independent random errors. Consequently,
the error increases by a factor of 1/5/4 due to the inclusion of the noisy floating-car
data. Using optimal weights,

1
Vopt = §(4V1 + VZ) 5

yields the error variance

1 1 4

2 2 2 2 2 2
(GV)Opt = g (1661 +62) = g (1661 +461) = gGl .
This means, adding floating-car data with a small weight to the stationary detector
data reduces the uncertainty by a factor of down to y/4/5, in spite of the fourfold
variance of the floating-car data compared to the stationary detector data.

Problems of Chapter (7

[7.1] Speed Limit on the German Autobahn?

The safety aspect of speed limits cannot be modeled or simulated by traffic-flow
models simply because these models are calibrated to normal situations (including
traffic jams). However, accidents are typically the consequence of a series of unfor-
tunate circumstances and extraordinary driving behavior which is not included in the
models. In contrast, the effect on fuel consumption can be modeled and simulated
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reliably by combining microscopic or macroscopic traffic flow models with the cor-
responding models for fuel consumption or emissions, cf. Chapter 23] To assess the
economic effect of speed limits, including social welfare or changed traffic patterns,
one needs models for traffic demand and route choice, i.e., models of the domain of
transportation planning. Traffic flow models are suited, however, to investigate cer-
tain environmental and societal aspects on a smaller scale. For example, traffic flow
models in connection with consumption/emission models describe the direct effect
of speed limits on emissions. Furthermore, since speed limits change the propensity
for traffic breakdowns and traffic flow/emission models can describe this influence
as well as the changed emissions in the jammed state, these models also describe
the indirect effect via traffic breakdowns.

Problems of Chapter [§]

Flow-Density-Speed Relations
We require

0" =Y 0i=) pVi=p"V

which we can fulfil by suitably defining the effective average V of the local speed
across all lanes. Solving this condition for V directly gives

V:Z p: Vl:ZWlV“

p tot

i.e., the definition (8.7 of the main text.

Conservation of Vehicles

In a closed ring road, the vehicle number n(t) is the integral of the total vehicle den-
sity p'° = I(x)p over the complete circumference of the ring. Applying Eq. 817)
for Vimp = 0 and the hydrodynamic relation pV = Q, we obtain for the rate of change
of the vehicle number

(CITI: = ,?{ (I(x)aQa(i,f) +Q(x7t)gi> dx = 7?{%&5: IQ'E'

If the road is closed, we have x. = x,, SO ‘é—;‘ = 0 and the total vehicle number n does
not change over time.

Continuity Equation I
(i) The continuity equation for x < 0 or x > L = 300m, i.e., outside of the merging
region, has no source terms and reads

o 90 _

W_F ox =0
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In the merging region 0 < x < L, we have an additional source term Vimp(x,?) that
generally depends on space and time:

aal + a£ = Vrmp(xat)'

t dx

Now we assume that Vi is constant with respect to x over the merging region L. In
view of the definition of v, this means that the differential merging rate on a small
segment of the merging lane, divided by the number of main-road lanes, is constant.
We obtain the connection between the ramp flow Qpyp and Viyp by integrating v
over the merging region and requiring that the result is equal to the ramp flow (if
there are several ramp lanes, the total ramp flow) divided by the number I of main-
road lanes. Thus,

L L

ermp = / Vimp dX = Vimp / dx = Vemp L,
0 0

SO
Omp 1 600veh/h

V, = =

™PTIL 2 300m
(i) It is easy to generalize the source term Vyyp(x) to inhomogeneous differential
merging rates. In the most general case, we prescribe a distribution function of the
merging points{?] over the length of the merging lane by its probability density f(x):

Vimp (X,1) = Qrmfp(t)f(x).

= lveh/m/hour.

For case (i) (constant differential changing rates),

Juniform (X) = {0/ otherwise

i.e., the merging points are uniformly distributed over the interval [0, L]. To model
drivers who, in their majority, merge in the first half of the length of the merging
lane, we prescribe a distribution f(x) which takes on higher values at the beginning
than near the end of the lane, e.g., the triangular distribution

Fearty(x) = { 2<LL?‘> if0<x<L,

0 otherwise.

If we want to describe a behavior where drivers change to the main road near the
end (which applies for some situations of congested traffic, we mirror feay (x) at

3 Later on, when we explicitly model lane changes by microscopic models, we will assume instan-
taneous lane changes, so the merging point is well-defined. For real continuous changes, one can
define x to be the first location where a vehicle crosses the road marks separating the on-ramp from
the adjacent main-road lane.
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x=L/2 to arrive at
2x :
_ L—z lf O S X S L7
Siate (%) { 0  otherwise.

Remark: A temporal dependency is modeled directly by a time-dependent ramp flow
Qup(1)-

Continuity Equation II
A stationary traffic flow is characterized by zero partial time derivatives, particularly,
Iplrr) | 901

ot =0, ot =0.

This simplifies the continuity equation (8.17) for the effective (lane-averaged) flow
and density for the most general case including ramps and variable lane numbers to

d x) dI
=28 G V) @
By the condition of stationarity, the partial differential equation (8.17) for p (x,¢) and
QO(x,t) with the independent variables x and ¢ changes to an ordinary differential
equation (ODE) for Q as a function of x. Stationarity also implies that the traffic
inflow at the upstream boundary is constant, Q(x = 0,¢) = Q.
(i) We can solve the ODE @)) for Vip = 0 by the standard method of separating the
variables:
do dl dx d/
Q0 Idx I
Indefinite integration of both sides with respect to the corresponding variable yields
InQ = —In/ + C with the integration constant C. Applying the exponentiation on
both sides results in

where C = exp(C). The new integration constant is fixed by the spatial initial con-
ditions C = I(x = 0)Q(x = 0) = IpQp where I is the number of lanes at x = 0. This
also determines the spatial dependency of the flow:

_ hQo
)

Notice that this is consistent with the stationarity condition Q"' = I(x)Q(x) =
IoQp = const.

(ii) To describe an on-ramp or off-ramp merging to or diverging from a main road
with I lanes with a constant differential rate, we set

Qrmp
IL

Q(x) 3

Vimp = = const,
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where Oyyp < 0 for off-ramps. Applying the condition of stationarity to the conti-
nuity equation (8.17) assuming a constant number / of lanes results in the ODE

dQ _ [ Vimp parallel to merging/diverging lanes,
dx |0 otherwise,

with prescribed and constant Q(x = 0) = Qo = Q™'/I at the upstream boundary. In
our problem with an off-ramp upstream of an on-ramp (which is the normal config-
uration at an interchange), we have

4o —Qoff/ (ILofr)  if 300m < x < 500m,
= Qon/(ILon) if 700m < x < 100m,
dx .
0 otherwise.

where Ly = 200m, and Lo, = 300m. We calculate the solution to this ODE by
simple integration:

Qo if x < 300m,

Qo — Qoft(x —300m) / (ILogr) if 300m < x < 500m,
O(x) =< Qo— Qost/1 if S00m < x < 700m,

Qo — Qott/I + Qon(x —700m) /(ILoy) if 700m < x < 1,000m,

Qo+ (Qon — Qott) /1 if x > 1,000 m.

Continuity Equation ITI

The highway initially has Iy = 3 lanes, and a lane drop to 2 lanes over the effective
length L:

3 x <0,
I(x)= (3—%) 0<x<L,
2 x> L.

Since the traffic demand (inflow) is constant, Q;, = 0'°'(0) = 3,600 veh/h, and there
is no other explicit time dependence in the system, the traffic flow equilibrates to the
stationary situation characterized by % =0:

do o) dI

dx I(x) dx’
1. The solution for the section with a variable lane number reads (cf. Eq. (3)):

_ Qo Ot

1(x)  I(x)
Upstream and downstream of the lane drop, we have I(x)=const., i.e.,

o) = 2.

0(x)

In summary, this results in
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o°/3 x<0,
o) ={ & 0<x<L
o°/2 x>L
Furthermore, the hydrodynamic relation Q = pV with V = 108 km/h gives the
density
0 11.11 /km x<0,
pW=y =1 FFm O0<x<L

16.67 /km x> L.

2. We insert the relation I(x) =3 —x/L and dI /dx = —1/L for the lane drop and
Q(x) = 0"/(3 — x/L) for the flow into the right-hand side of Eq. @):

dQ Qtot & I B Qtot

E__IZ(x)ﬁ_L@_%)z'

The right-hand side can be identified with the searched-for effective ramp term:

tot
eff Q
vrmp = .

We determine the effective ramp flow corresponding to vfnflfp( x) from the point
of view of the two remaining through lanes:

2 tot dx 2 tot 1
(r:[f;p_z/ frgpdx_ Q / ,2: Q ( x)
0 (37 ) L 3-1

7 L
Qtot
3

L

0

=1,200veh/h/lane.

Here, we used the indefinite integral

/ x L
(-1 371

Continuity Equation for Coupled Maps
We start from the formulation for global flows and densities:

ptot aQtot
or " Tox

=IVimp

By definition, we have p;®* = 10"’Wn Pi- Assuming constant change rates for a small
discrete time interval Az, the tlme derivative term becomes

8pl£0t B Igown(pk([qLAl) *pk(t))

ot At
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Assuming constant flow changes over the length of the merging lane, the gradient

term becomes . . up up
tot own own
d Ok _ I Q" — 1.0y

ox Axy,
Finally, we simply have, by definition,

I Vimp = Qrmp/ L™ = Qrmp / Ax

Putting this together, we obtain

pk([+A[) = pk(t) —+ (IuszP JrQrmp 71d0an20wn) AL

Jdown A Xk

For the continuous steady-state condition, we just derive this expression setting

tot
ag’; = 0 while, in the discrete case, we just set the pi(f + Af) = pi(¢) and multiply

Eq. (8I8) by 79°*". In both cases, we obtain

0= I;;p sz o I]((jown ngwn + Qrmp

which is the flow balance given in the problem statement. This balance means that,
in steady-state conditions, the ramp flow is equal to the total outflow Qg""”‘lGlown
from a cell minus the total inflow Q;"I"P which is consistent with vehicle conserva-
tion.

Parabolic Fundamental Diagram
For the fundamental diagram

0(p) = pV(p) = pVo (1 - pj) |

the maximum flow (capacity per lane) Qmax 1S at a density pc. We determine pc, as
usual, by setting the gradient Q' (p) equal to zero:

Vope _ 1

0'(pc)=Vo—2 0 = pc=;Pma:

max
Hence
_ Pmax VO

Qmax = Q(PC) 4

Problems of Chapter 9]

Propagation Velocity of a Shock Wave Free — Congested

The triangular fundamental diagram is semi-concave, i.e., the second derivative
"(p) is non-positive, and the first derivative Q,(p) is monotonously decreasing.

This means, any straight line connecting two points on the fundamental diagram
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always lies below or, at most, on the fundamental diagram Q.(p). Consequently,
the slope c12 = (Q2 — Q1)/(p2 — p1) of this line cannot be greater than Q'(0) = Vp
and not less than Q' (Pmax ) = ¢ proving the statement. Since this argumentation only
relies on the semi-concavity of the fundamental diagram, it can also be applied to
the parabolic fundamental diagram of Problem[8.7]leading to cy2 € [V, Vo).

Driver Interactions in Free Traffic

There are not any in this model. If there were interactions, the followers would react
to the leaders, so the information of the shock wave would propagate at a lower
velocity than the vehicle speed, contrary to the fact.

Dissolving Queues at a Traffic Light

When the traffic light turns green, the traffic flow passes the traffic light in the
maximum-flow state. For the triangular fundamental diagram, the speed at the
maximum-flow state is equal to the desired speed and the transition from the waiting
queue (density pmax) to the maximum-flow state propagates backwards at a velocity
w = —legt/T corresponding to the congested slope of the fundamental diagram. In
the microscopic picture, every follower starts a time interval T later than its leader
and instantaneously accelerates to Vy (Fig. [0.18). This suggests to interpret T as
the reaction time of each driver, so |c| is simply the distance between two queued
vehicles divided by the reaction time.

We emphasize, however, that the LWR model does not contain any reaction time.
Moreover, the above microscopic interpretation no longer holds for LWR models
with other fundamental diagrams. Therefore, another interpretation is more to the
point. As above, the driver instantaneously starts from zero to Vp which follows
directly from the sharp macroscopic shock fronts. However, the drivers only start
their “rocket-like” acceleration when there is enough time headway at Vj. Thus,
|c] is the distance between two queued vehicles divided by the desired time gap T
in car-following mode. Similar considerations apply for concave fundamental dia-
grams (such as the parabola-shaped of Problem [8.7). This allows following general
conclusion:

The fact that not all drivers start simultaneously at traffic lights is not caused
by reaction times but by the higher space requirement of moving with respect
to standing vehicles: It simply takes some time for the already started vehicles
to make this space.

Total Waiting Time During One Red Phase of a Traffic Light

The total waiting time in the queue is equal to the number n(r) of vehicles waiting at
a given time, integrated over the duration of the queue: Defining ¢ = 0 as the begin
of the red phase and x = 0 as the position of the stopping line, this means

Tr+Tdiss Tr+Tdiss Xo (t>
tot

T = / n(t)dt = / /pmaxdxdt:pmaxm
0 0 x,()
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i.e., the total waiting time is equal to the jam density times the area of the queue in
space-time (cf. the following diagram).

A Tr Tdiss

F

The area of the congested area is equal to the sum of the area of the two right-angled
triangles with the legs (7, —cupTr) and (Tgiss, —CupTr), Tespectively:

1
tot 2
% = Epmax (*Cupfr - CupTeriss) .

To obtain the second right-angled triangle DEF’, we have shifted the point F of the
original triangle DEF to F’ which does not change the enclosed area. Furthermore,
we have the geometrical relation (cf. the figure again)

CupTr = (W - Cup>Tdis57

i.e., Taiss = CupTr/ (W — cyp). Inserting this into the expression for ' finally gives

1 CupW
tot 2 up
T o= = Pmax T;
2 Cup —
with
Qin 1

C, = w=— .
o Qin/VO — Pmax ’ pmaxT
The total waiting time increases with the square of the red time.

Jam Propagation on a Highway I: Accident

Subproblem 1. With the values given in the problem statement, the capacity per
lane reads
Omax = N =2,016veh/h
max VOT+letf ’ .
The total capacity of the road in the considered driving direction without accident is

just twice that value:
C =20max = 4,032veh/h.
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This exceeds the traffic demand 3,024 veh/h at the inflow (x = 0), so no jam forms
before the accident, and only road section 1 exists. Since there are neither changes
in the demand nor road-related changes, traffic flow is stationary and the flow per
lane is constant:

0 = % =1,512vehs/h, V;=Vp=28m/s, p;= % = 15veh/km.
0

This also gives the travel time to traverse the L = 10km long section:
L
firav = — = 357s.
trav o S

Subproblem 2. At the location of the accident, only one lane is open, so the bottle-

neck capacity
Coott1 = Omax = 2,016 veh/h

does not meet the demand any more, and traffic breaks down at this location. This
means, there are now three regions with different flow characteristics:

e Region 1, free traffic upstream of the congestion: Here, the situation is as in
Subproblem 1.

* Region 2, congested traffic at and upstream of the bottleneck.

* Region 3, free traffic downstream of the bottleneck.

From the propagation and information velocities of perturbations in free and con-
gested traffic flow, and from the fact that the flow but not the speed derives from a
conserved quantity, we can deduce following general rules:

Free traffic flow is controlled by the flow at the upstream boundary, congested
traffic flow and the traffic flow downstream of “activated” bottlenecks is con-
trolled by the bottleneck capacity.

For the congested region 2 upstream of the accident (both lanes are available),

this means
_ Choul

0> = 1,008 veh/h.

To determine the traffic density, we invert the flow-density relation of the congested
branch of the fundamental diagramE

1-0,T

=72.5veh/km.
et

P2 = pcong(QZ) =

Subproblem 3. To calculate the propagation velocity of the shock (discontinuous
transition free — congested traffic), we apply the shock-wave formula:

6 Beware: The fundamental diagram and derived quantities (as Peong(Q)) are always defined for
the lane-averaged effective density and flow.
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gy = 27O —8.77km/h.

PP
Subproblem 4. After lifting the lane closure, the capacity is, again, given by
C = 2Qmax = 4,032 veh/h, everywhere. In the LWR models, the outflow from con-
gestions is equal to the local capacity, so the new outflow from the congestion is
characterized by Q4 = C/2 = Qmax, Va = Vo, and ps = Q4/Vp = 20veh/h. Fur-
thermore, the transition from regions 2 to 3 (downstream jam front) starts to move
upstream at a propagation velocity again calculated by the shock-wave formula:
_ Q=0

Cdown _

~19.2km/h.

The jam dissolves if the upstream and downstream jam fronts meet. Defining ¢ as
the time past 15:00h, x as in the figure of the problem statement, and denoting the
duration of the bottleneck by Tyo1 = 30 minutes, we obtain following equations of
motion for the fronts,

xup(t) = L+c"t,
Xdown (t) =L+ C(t - Tbottl)~

Setting these positions equal results in the time for complete jam dissolution:
c
Ldissolve = Thottl T 3,312s.
c—c'?

The position of the last vehicle to be obstructed at obstruction time is equal to the
location of the two jam fronts when they dissolve:

tgissolve = L+ ¢"P tgissolve = 1,936 m.

Subproblem 5. 1In the spatiotemporal diagram, the congestion is restricted by three
boundaries:

e Stationary downstream front at the bottleneck position L = 10km for the times
t € [0, Tpota],

* Moving downstream front for # € [Ty, dissolve] Whose position moves according
t0 Xdown (t) =L+ C(t - Tbottl)7

* Moving upstream front for ¢ € [0, gissolve] Whose position moves according to
Xup(t) = L+c"Pt
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Subproblem 6. We follow the vehicle trajectory starting at time ¢t =ty = 1,800s at
the upstream boundary x = 0 by piecewise integrating it through the three regions
(cf. the diagram):

1. Traversing the inflow region: The vehicle moves at constant speed Vj resulting
in the trajectory x(¢) = Vo(t —tp).

2. Traversing the jam: To calculate the time f, of entering the jam, we intersect
the free-flow trajectory with the equations of motion xy,(f) = L+ c"Pt for the
upstream front:

L+Woty
tup = W = 1,9845

The corresponding location xyp = Vo(tup — o) = 5,168 m. Hence, the trajectory
reads
Q

x(t) :xup“‘vcong(t—tup)7 Veong = pjz e 3.86m/s.

3. Trajectory after leaving the jam: Since, at time #,p, the bottleneck no longer ex-
ists, we calculate the exiting time by intersecting the trajectory calculated above
with the equations of motion of the moving downstream front. This results in

L — xyp — cto + Veonet,
fgown = ———p 0T CongW 5 403,
Veong — €
Xdown = Xup + W(fdown —tup) = 6,783 m.

After leaving the jam, the vehicle moves according to trajectory x(#) = Xdown +
Vo(t — taown ), SO the vehicle crosses the location x = L = 10km at time

L—x,
Tend = tdown + - Cdown _ 2,518s.
Vo
In summary, we obtain for the total travel time to traverse the L = 10km long
section
T ="leng —to = 718.1s.

Jam Propagation on a Highway II: Uphill Grade and Lane Drop
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Subproblem 1. As in the previous problem, we calculate the capacities with the
capacity formula of the triangular fundamental diagram:

Vo

=9  —2000veh/h,
Ormax VoT + Lt veh/
V.
111 03
= ———— =1,440veh/h.
Omax Vo3 13 + Lt /

Subproblem 2. For the total quantities, lane drops, gradients, and other flow-
conserving bottlenecks are irrelevant, and the continuity equation reads

tot tot tot
ap 20 _ 20 o,
ot ox ox

Since the inflow is constant, Qj, = 2,000veh/h, and less the minimum capacity
CM = 20N =2 880veh/h, this amounts to stationary free traffic flow in all four
regions I - IV with Q' = Q;, = const. From this information, we calculate the
effective flow of all regions by dividing by the respective number of lanes, and the
density by the free part of the fundamental diagram:

174 Qtot Q ptot p
[km/h] [veh/h] [veh/h/lane] [veh/km] [veh/km/lane]
Region I 120 2,000 667 16.7 5.55
Region II 120 2,000 1,000 16.7 8.33
Region Il 60 2,000 1,000 333 16.7
Region IV 120 2,000 1,000 16.7 8.33

Subproblem 3. Traffic breaks down if the local traffic flow is greater than the lo-
cal capacity. Thus, the jam forms at a location and at a time where and when this
condition is violated, for the first time. Since the capacities in the four regions are
given by 6,000, 4,000, 2,880, and 4,000 vehicles/h, respectively, the interface be-
tween regions II and IIT at x = 3km is the first location where the local capacity
can no longer meet the new demand Qj;, = 3,600veh/h. Traffic breaks down if the
information of the increased demand reaches x = 3km. This information propagates
through the regions I and II at ¢gee = Vo = 120km/h, or at 2 km per minute, so

Xpreakd = 3KM,  fyreakd = 16:01:30 h.

Subproblem 4. To determine density, flow, and speed of congested traffic in the re-
gions I and II, we, again, adhere to the rule that free traffic flow is controlled by the
upstream boundary while the total flow of congested regions and of regions down-
stream of “activated” bottlenecks are equal to the bottleneck capacity at some earlier
times determined by the information propagation velocities cf..e and w, respectively.
Furthermore, densities inside congestions are calculated with the congested branch
of the fundamental diagram while the free branch is used in all other cases. Denoting
with regions Ib and IIb the congested sections of regions I and II, respectively, and
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with regions Ia and Ila the corresponding free-flow sections, this leads to following
table for the traffic-flow variables:

V Qtot Q ptot p
[km/h] [veh/h] [veh/h/lane] [veh/km] [veh/km/lane]
la(I=23) 16 3,600 1,200 30 10
Ib(I=3) 120 2,880 960 180 60
Ila(I=2) 36 3,600 1,800 30 15
IIb (I =2) 120 2,880 1,440 80 40
I (I =2) 60 2,880 1,440 48 24
IVI=2) 120 2,880 1,440 24 12

Notice that the local vehicle speed inside congested two-lane regions is more than
twice that of three-lane regionsm

Subproblem 5. To calculate the propagation velocities of the upstream jam front in
the regions I and II, we use, again, the shock-wave formula together with the table
of the previous subproblem:

b AQ [ -240/(60—10)km/h = —4.8km/h  Interface Ia-Ib, situation (i),
87 Ap | —360/(40 — 15)km/h = —14.4km/h Interface Ila-IIb, situation (ii).

Toll Plaza

Subproblem 1. The free-flow speed V) = 25m/s is given directly. With the relation
w = —l/T between the wave speed and the effective length legr = 1/pmax, the
triangular FD has a maximum flow

W oo W
VoT + e leff( _E>

Qmax =

w
which can be solved for the effective vehicle length:
1 Vo

e = o (1 —%> =8.33m.

leff =

Then, the maximum density Pmax = 1/lesf = 120veh/km and the time gap T =
—legt/w = 1.67 s can be calculated easily.

Subproblem 2. With a serving capacity of 300 veh/h per booth, the total serving
capacity is Cg = 4,500veh/h which is greater than the inflow Q;, = 4,200veh/h,
so no breakdown occurs.

7 When being stuck inside jams without knowing the cause, this allows to draw conclusions about
the type of bottleneck, e.g., whether it is a three-to-two, or three-to-one lane drop.
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Subproblem 3. With the surge in the demand, the bottleneck capacity C, = 4,500 veh/h
does no longer meet the demand Q;, = 5,400veh/h and a breakdown occurs. In
LWR models this means that a shockwave appears. Because the drivers always use
the shortest line, the upstream jam front free — congested has the same location x"P

on all lanes, the congested flow per lane is given by the servicing capacity and the
congested density per lane by the inverse of the congested branch of the triangular
fundamental diagram:

Qcong = 300veh/h =1/12veh/s,
Pcong = Pmax (1 — QcongT) = Pmax + Qcong/W = 103.3 veh/km.

The free flow in the plaza upstream of the jam front distributes on all 15 lanes, hence

Ofree = Oinl5 = 360Veh/h, Ptree =

The time until the toll plaza of length L = 200m fills up, can be calculated in two
means. (i) Vehicle conservation:

15 — L
Thy = ﬁ (pcong pfree) — 1192s.

AQ  Ou-G,

(i) With the shockwave formula:

Cop = —= = = _0.1678m/s, Ty =
w pcong — Pfree / ~Cup

=1192s.

Subproblem 4. Average speed in the congested lines in the plaza: Veong = Ocong / Peong =
0.8065m/s, queuing time L/Veong = 248s.

Subproblem 5. Calculation as in Subproblem 3, only with 3 instead of 15 lanes,

4,500veh/h 5,400veh/h
Ouons = P20t s00ven/n, O = 20Xy g00ven /i,
Pcong = pmax(l - QcongT) =36.7 Veh/km, Ptree = Q‘Zee =25 m/s

results in a congested speed Veong = Qcong/ Pcong = 11.36m/s and a propagation
velocity of the upstream front of ¢,, = w = —5m/s. Notice that we do not even
need to use the shockwave formula to calculate ¢y, because the free section is at
capacity, i.e., at the tip of the triangular FD, hence ¢y, = w.

Subproblem 6. For ideal lane synchronization and diverging to the new lanes, and
assuming x = 0 at the beginning of the widening, the fractional lane number at
position x is given by
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where L,, = 160m. Then, the position dependent congested speed in the widening
section is given by

G
0 ) Cp

= pcong(Q) - pmax <1 _ %) - pmax (I()C) _CbT) :

V(x)

Subproblem 7. The travel time through the fully congested widening section is the
space integral over the inverse of the speed,

Ly dy
T, = /
" Lo V()

_ L prax (I1(x) — G T) dx
x=0 Cb

Ly 12
= —PmaxT Ly + Pmax <3 + x) dx

x=0 Cb L,

= Pmaxl (9 -~ T) — 106.24s.
Gy

Diffusion-Transport Equation
Inserting the initial conditions into Eq. (9.57) results in

—(x—x —ét)?

L
1
p(x,t) —poo/ oD eXP[ AD:

Jav.

Since the integrand is formally identical to the density function fy(x') of a (u,c?)
Gaussian distribution (with space and time dependent expectation (¢) = x — & and
variance 6 (t) = 2Dr), we can the above integral write a

Since the integrand is the density of a Gaussian distribution function, the integral
itself can be expressed in terms of the (cumulated) Gaussian or normal distribution

v = [ ey,

resulting in
2 2
p(x,) = po [FA(/MO- )(L) _FA(/IL,G )(0) )

8 When doing the integral, watch out that the variable to be integrated is x’ rather than x.
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Since this is no elementary function, we express the result in terms of the tabulated
standard normal distribution @ (x) = FA(,O‘I) (x) by using the relation F (x) = & ((x —

i)/o) taught in statistics courses. With y = x — & and 62(t) = 2Dt, this results in

[ (L—p —u
t) = | —— |- —
plxr) =g @ (o8 )~ ()]
[ L—x+ct —x+Ct
= ) _p( 2
| ( V2Di ) ( NeT )]
[ [(x—ct x—¢ét—1L
| (\/2Dt> ( V2Di )]
In the last line, we have used the symmetry relation ®(x) = 1 — @(—x). In the limit-
ing case of zero diffusion, the two standard normal distribution functions degenerate
to jump functions with jumps at the positions ¢t and L+ ét. This is consistent with
the analytic solution of the triangular LWR model, p(x,7) = po(x — ¢t) where pg(x)

denotes the initial density given in the problem statement. For finite diffusion con-
stants, the initially sharp density profiles smear out over time (cf. Fig.[9.29).

Problems of Chapter [10]

[10.1 Ramp Term of the Acceleration Equation

Macroscopically, the total derivative %—‘; of the local speed denotes the rate of change
of the average speed of all n = p Ax vehicles in a (small) road element of length Ax
comoving with the local speed V,

v dEM) d[1&
dr - dr _dt<nzv’>' @)

i=1

Without acceleration of single vehicles (% = 0), the rate of change is solely caused
by vehicles entering or leaving this road element at a speed Vimp # V (cf. Fig.[10.5).
Assuming that the position of the merging vehicles is uniformly distributed over the
length Ly, of the merging region, the rate of change of the vehicle number is given
by

dn Ax

E =q= Qrmp?mP
whenever the moving road element is parallel to the merging section of an on-ramp.

When evaluating the time derivative (), we notice that both the prefactor % and the
sum itself depend explicitly on time. Specifically,

®)
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The second equation follows from the problem statement that all vehicles enter the
road at speed Vimp and no vehicles (including the ramp vehicles) accelerate (v; =
const). Using these relations and Y} ;v; = nV, we can write the rate of change of the

local speed as
L _dEw) a1
mp — ~— . — L\ A i
dr dr \ n(t) &
_ _@ o @Vimp
n n
o Q(Vrmp V)
n n
_ Qrmpr(Vrmp - V)
nerp
Qo (Ve — V)
Loy

In the last step, we have used n = Ip Ax.
10.2] Kinematic Dispersion

Subproblem 1. The lane-averaged local speed is given by

V= Vi+paVa).
p1+pz(p” p2V2)

First, we calculate the initial speed variance across the lanes (k = 1 and 2 for the left
and right lanes, respectively):
O"%(X,O) =E ((Vk(xvo) - V)z)
pi(Vi=V)+p(Va—V)?
p1+p2

b

or, for the special case p; = py,

Vi —V,)?
o7 (x,0) = % =100 (m/s)? = const.

Notice that these expressions give the true spatial (instantaneous) variance. In con-
trast, when determining the time mean variance at a given location from data
of a stationary detector station, we would obtain for lane 1 the weighting factor
01/(Q1+ Q2) = 1/3 instead of the correct value p; /(p1 + p2) = 1/2 resulting in a
biased estimate for the true variance (cf. Chapter[3)).

Subproblem 2. The kinematic part Py, = pc‘% of the pressure term leads to a fol-
lowing contribution of the local macroscopic acceleration,
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0.01s~2

0<x<100m

Agn=——2 =—— = (p(x,)a2) =4 P <x<100m,
kin (p( ) V) { 0 otherwise.

(The factor 0.01s~2 result from the gradient g—i = 10~*m~2 multiplied by the vari-
ance 100 (m/s)?.) Consequently, a finite speed variance implies that a negative den-
sity gradient leads to a positive contribution of the macroscopic acceleration. This
will be discussed at an intuitive level in the next subproblem.

Subproblem 3. 1If there is a finite variance 0"% and a negative density gradient (a
transition from dense to less dense traffic), then the vehicles driving faster than the
local speed V go from the region of denser traffic to the less dense region while the
slower vehicles are transported backwards (in the comoving system!) to the denser
region. Due to the density gradient, the net inflow of faster vehicles is positive and
that of slower vehicles negative. This is illustrated in the following figure, the upper
graphics of which depicting the situation in the stationary system, and the lower
one in a system comoving with V. As a result, the averaged speed V is increasing
although not a single vehicle accelerates while the total number of vehicles in the
element, i.e., the density, is essentially constant.

|
DEE ® @B seon
" = m |
T
x=0

T
x=100 m

|
@D @p Wy @R mp mp =% Comoving
— — — — — — = — — system
T et

x:vo( x:VO[ +100 m

Subproblem 4. Assuming that higher actual speeds are positively correlated with
higher desired speeds, the mechanism described in Subproblem 3 leads to a segre-
gation of the desired speeds such that the fast tail of the desired speed distribution
tends to be found further downstream than the slow tail. This is most conspicu-
ous in multi-lane queues of city traffic waiting behind a red traffic light when the
light turns green: If there is one lane with speeding drivers, these drivers will reach
first a given position downstream of the stopping line of the traffic light. At this
moment, the traffic composition at this point consists exclusively of speeding driv-
ers. Macroscopically, this can only be modeled by multi-class macroscopic mod-
els where the desired speed Vy(x,?) becomes another dynamical field with its own
dynamical equation. Because of their complexity, such Paveri-Fontana models are
rarely used.

Modeling Anticipation by Traffic Pressure

Subproblem 1. Since, by definition, the traffic density is equal to the number of
vehicles per distance, one vehicle distance, i.e., the distance headway d, can be
expressed by the density:
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P((x+xa)/2,1) — plx1)

The first expression to the right of the equal sign is accurate to second order in x, —
x = d. The second expression 1/p(x,?) is accurate to first order which is sufficient
in the following.

Subproblem 2. We expand the nonlocal part V,(p(x,,7)) = Ve(p(x+d,t)) of the
adaptation term to first order around x:

Ve(p(x+d,1)) = Ve(p(x,1)) + —= d+ 0(d?)

Ve(p(x,1))
dx

dVe(p(x,1))
_ ve<p<x,r>>+%d +o(d).

Inserting this into the speed adaptation term results in

<d"> L Velp(et)) ~V(n) 1 dVe(p(x.1))
relax+antic

dr T pT dx
i Ve(p(x7t) _V(xat) _ldP(XJ)
N T p dx ’

where, in the last step, we set the result equal to the general expression for the
acceleration caused by P. The comparison yields

Vlp(r))

P(x,t) = — -

Subproblem 3. According to the problem statement, the density profile obeys (with
po = 20veh/km = 0.02 veh/m, ¢ = 100veh/km? = 10~* veh/m?)

Po x <0,
p(x,t)=4¢ po+ecx  0<x<200m, (6)
2p0 x>200m.

(i) Acceleration by anticipation when using the original relaxation term:

(dV> _ Velpx+1/p(x,1),1)) = Ve(p(x,1))
relax

)

dr T

where V,(p) = Vo(1 — p/Pmax) is given in the problem statement (such a relation
is rather unrealistic; it serves to show the principle in the easiest possible way).
Inserting Eq. (@), we obtain
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0 x<—1/pp orx>200m,
dv T;Y:ﬁi (% +x) —% <x<0,
& ) | 55 0 <x<200m— 5L,
(20— p)  200m — 5 < x < 200m,

where the criterion separating the last two cases is only approximately valid.
(i1) Expressing the acceleration contribution by the pressure term, we obtain

<dV) 0 X< 0orx>200m,
dr = —Voc 1
dr pressure TPm:\)xp 0<x<200m— T

Except for the transition regions at the beginning and end of the density gradient,
this agrees with the acceleration derived from the original relaxation term. How-
ever, in contrast to the pressure term, the nonlocal anticipation term provides “true”
anticipation everywhere, including the region —1/py < x < 0 where the local ap-
proximation by the pressure term does not “see” anything. In summary, the nonlocal
route to modeling anticipation is more robust.

[[0.4 Steady-State Speed of the GKT Model

In the steady state on homogeneous roads, all spatial and temporal derivatives van-
ish, so the GKT acceleration equation reduces to V = V,*. Furthermore,
the homogeneity associated with the steady state implies V, =V and p, = p, and
the Boltzmann factor is given by B(0) = 1. Using these conditions and the defini-
tion (T0.28)) for V*, we can write the condition V =V as

v._,_ _ap) ( pVT )2
1_pa/pmax '

v0 - a(pmax)

This is a quadratic equation in V. Its positive root reads

V2 4vg
v:Ve(p)=m —1+ 1+V§

with the abbreviation

& (Pmax) (1 —pP/Pmax) .

"\ Tale) T

For densities near the maximum density we have V < Vj and &¢(p) = 0(pmax ). With
the micro-macro relation s = 1/p — 1/pmax, we can write the steady-state speed in
this limit as

o (1=p/Ppmax) _ s
Ve(p)~V~7pT =7
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Notice that this implies that 7" has the meaning of a (bumper-to-bumper) time gap
in heavily congested traffic.

[10.3] Flow-Conserving Form of Second-Order Macroscopic Models
We start by setting V = Q/p in the continuity equation:

dp 90 _Qdr
ot ox  Idx

Multiplying the acceleration equation (I0.TT) by p and inserting V = Q/p gives the
intermediate result

IV IV pvi-Q 9P _d [ I(Q/p)
(9 o

P T T 1 ox | ox

Now we substitute the time derivative of the local speed by the time derivative
of the flow and replace the resulting time derivative of the density with the flow-
conservative continuity equation. The left-hand side of the last equation then reads

aV aQ (7p A%
+Q(9 5 f—i-Qa*
20 20 Qdr oV
E +V7 +V7a ermp“‘Qai

20 d(QV) _Qdl
E“F Ox “FVTa ermp~

Substituting again V = Q/p and grouping the spatial derivatives together, we obtain

90 %5 d (Q\]_pPVe-Q Q°dl  QVmp
§+$ {erP#&x < o pIdx+ P +pArmp.

Numerics of the GKT Model

Neglecting the pressure term (its maximum relative influence is of the order of
\/a = 10%), the first CFL condition (I0.46)) for the convective numerical instability
reads

Ax
At < — =1.5s. 7
Vo s (7N

Since the GKT model does not contain diffusion terms, the second CFL condition
is not relevant. However, the relaxation instability must be tested: The characteristic
equation det(L — A1) = O for the eigenvalues of the matrix L of the linear equa-

tion (10.42) reads

A(Ln—A) = -2, [i <—1+pav‘€(§’;’Q)> —;L] —0

resulting in the eigenvalues
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1 Ve (P

where

Ve(p7Q) :Ve*(paQ7p7Q) :VO

P ( Q.T )2
Omax \ 1 =P /Pmax
With this result, the condition A7 < |4, !| to avoid relaxation instability becomes

T

2a(p)Vop Qe T 2’
I+ . (lfp/pmax)

At <

Omax

i.e., Eq. (I0.31)) of the main text. In the limit of high densities p — Pyax We make
use of the approximate relation (cf. Problem [10Q.4)

Velp) % (15— =
P70 Pax

7(p)
14207

to arrive at
At <

which is Eq. (I0.52)) of the main text. Inserting Prax.sim = 0.1m ™! from the problem
statement and V,(Pmaxsim) = 4.14m/s (watch out for the units! If in doubt, always
use the ST units m, kg, and s), we finally obtain

A =1.32s. (8)

1< —
|42

The definitive limitation of the time step is given by the more restrictive one of the
conditions (@) and (), so Az < 1.32s.

The expression (10.57) for the numerical diffusion of both equations at V =
20m/s and A7 = 15 (i.e., the conditions for linear numerical stability are satisfied)
evaluates to A A

X t
Dyum =V =~ (1 VAx> =300m/s%.
This is only about 1/30 of the (real) diffusion introduced to the Kerner-Konhduser
model by the term proportional to D,, (assuming standard parameterization).

Problems of Chapter [11]

1.1 Dynamics of a Single Vehicle Approaching a Red Traffic Light
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Subproblem 1 (parameters). The free acceleration is the same as that of the OVM.
Hence, vy is the desired speed and 7 the adaptation time. If the model decelerates,
it does so with the deceleration b. Since, at this deceleration, the kinematic braking
distance to a complete stop is given by Axprke = v2/(2b), the vehicle stops at a
distance sq to the (stopping line of) the red traffic light. This explains the meaning
of the last parameter. Notice that, in this model, vehicles would follow any leading
vehicle driving at a constant speed v; < v at the same gap sy, i.e., the model does not
include a safe gap. Nor does it contain a reaction time. The model is accident-free
with respect to stationary obstacles, but not when slower vehicles are involved.

Subproblem 2 (free acceleration phase). Here, the first condition of the model ap-
plies, so we have to solve the ordinary differential equation (ODE) for the speed

dv  vo—v .
— = thv(0) = 0.
o - with v(0)
The exponential ansatz e for the homogeneous part % = —v/7 gives the solvabil-

ity condition A = 1/7. Furthermore, the general solution for the full inhomogeneous
(ODE) reads
v(t) =Ae /" +B.

The asymptotic v(e0) = B = vy yields the inhomogeneous part B. Determining the
integration constant A by the initial condition v(0) =A+B=A+vy =0 gives A =
—Vp, so the speed profile reads

v(t) =w (1 —e’%> .

Once v(¢) is known, we determine the trajectory x(¢) by integrating over time. With

x(0) = 0, we obtain
<1e—2>d/

=vot +voT (e_% — 1) .

t

—

t
x(1) = / V(i) di’ = v
0 0
t'=t
= {t/—i— Te f}
t'=0

By identifying parts of this expression with v(¢), this simplifies to
x(t) = vot —v(t)7.

Finally, to obtain the acceleration profile, we either differentiate v(¢), or insert v()
into the right-hand side of the ODE. In either case, the result is

. Vo —V Vo _
= = — ¢ l/T.
T T
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Subproblem 3 (braking phase). The red traffic light represents a standing virtual
vehicle of zero length at the stopping line, so Av = v. This phase starts at a distance

2
Se =50+ b =50.2m
to the stopping line, and the vehicle stops at a distance sg to this line.

Subproblem 4 (trajectory). For the accelerating phase, the trajectory has already
been calculated. The deceleration phase begins at the location

V2
xch—Sch—So—E ~ 450m.

To approximately determine the time ¢, at which the deceleration phase begins, we
set v(f.) = vy to obtain

xe(te) = vote — V()T ~volte —T) = fo= S 4 1=32.45+5.0s = 37.4s.
Vo

With the braking time v /b, this also gives the stopping time

tyop =T + %0 — 4435,

In summary, the speed profile v(¢) can be expressed by (cf. the graphics below)

vo(l—e™ /) 0<t<t,,

V(t) =3 Yo— b(t _tc) te <t < Lstop,
0 otherwise.
50 -  — j 50 i T — ]
a0 - ] ol Y
= R = yd K
T 30+t / . T 30t/ A
= v = '
> 20 / v > 20 |/ 4
Acceleration phase . l Acceleration phase
10/ Braking phase - - - - N 10 Braking phase - - - -
0 . . . . . . . . 0 . . . .
0 5 10 15 20 25 30 35 40 0 100 200 300 400 500
t[s] x [m]

11.2| OVM Acceleration on an Empty Road

(i) The maximum acceleration amax = vo/7 is reached right at the beginning, = 0.
(ii) Prescribing amax = 2m/s? and a desired speed vo = 120km/h determines the
speed relaxation time by

Vo

T= =16.7s.

Amax

(iii) We require that, at a time 719 to be determined, the speed should reach the value
V100 = IOOkm/h:

_ oo
V(tl()o):Vlo():vO(l—e T )
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Solving this condition for #1o9 gives

% - o fw=—th (1 - 38) ~29.9s.

Optimal Velocity Model on a Ring Road

The problem describes a situation with evenly spaced identical vehicles on a ring
road which, initially, are at rest. This means, traffic flow is not stationary (since the
initial gaps are greater than the minimum gap) but homogeneous: Since the road is
homogeneous, and the vehicle fleet consists of identical vehicles, the homogeneity
imposed by the initial conditions is not destroyed over time. For microscopic mod-
els, homogeneity implies that the dynamics depend neither on x nor on the vehicle
index i. So, dropping i, the OVM reads

dv Vopt(8(0)) —v

dr T ’
The solution to this ODE is analogously to Problem[I1.2] only vy is replaced by the
steady-state speed v, = vop(s(0)).

[@1.4] Full Velocity Difference Model

General plausibility arguments require the steady-state speed vop(s) to approach the
desired speed vy when the gap s tends to infinity. However, for an arbitrarily large
distance to the red traffic light modeled by a standing virtual vehicle (Av = v), the
FVDM vehicle accelerates according to

_vw—v v (1
V= . YV—T <T+V)v.

From this it follows that the acceleration v becomes zero for a terminal speed

* Yo
vV = .
1477

This is the maximum speed an initially standing FVDM vehicle can reach in this
situation. It is significantly lower than vq. For the parameter values of the problem
statement, v* = 13.5km/h which agrees with Fig.

1.3 A Simple Model for Emergency Braking Maneuvers

Subproblem 1 (identifying the parameters). T, = denotes the reaction time, and
bmax 1s the maximum deceleration in emergency cases.

Subproblem 2 (braking and stopping distance). Assuming a fixed reaction timer 7,
and a constant deceleration bpx in the braking phase, elementary kinematic rela-
tions yield following expressions for the braking and stopping distances sg(v) and
Sstop(v) = VT + sp(v), respectively:
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sp(v) = =——, Sstop(v) = VT +5p(v)

with the numerical values

v=>50km/h: sp(v) =12.1m, s50p(v) =25.9m,
v =70km/h: sp(v) =23.6m, sgop(v) =43.1m.

Subproblem 3 (emergency braking). At first, we determine the initial distance such
that a driver driving at vi = 50km/h just manages to stop before hitting the child:

5(0) = Ssiop(v1) = 25.95m.

Now we consider a speed v, = 70km/h but the same initial distance s(0) = 25.95m
as calculated above. At the end of the reaction time, the child is just

s(T,) = 5(0) = v T, = 6.50m

away from the front bumper. Now, the driver would need the additional braking
distance sg(v2) = 23.6m for a complete stop. However, only 6.50 m are available
resulting in a difference As = 17.13 m. With this information, the speed at collision
can be calculated by solving As = (As)p(v) = v?/(2bmax) for v, i.e.,

Veoll = V 2bmaxAs = 1656m/s = 596km/h

Remark: This problem stems from a multiple-choice question of the theoretical
exam for a German driver’s licence. The official answer is 60 km/h.

Problems of Chapter 12

[[2.1] Conditions for the Microscopic Fundamental Diagram
The plausibility condition (I12.3)) is valid for any speed v; of the leading vehicle. This
also includes standing vehicles where Eq. (I2.3) becomes f(s,0,0) = 0 for s < s.
This corresponds to the steady-state condition v, (s) = 0 for s < sq.

Conditions (I2.1) and (12.2) are valid for any speed v; of the leader as well,
including the steady-state situation v; = v or Av = 0. For the alternative acceleration
function d(s,v,Av), this means

df(s,v,0) >0 df(s,,0)

s = 5 <0

Along the one-dimensional manifold of steady-state solutions {v.(s)} for s € [0, o],
we have f(s,v.(s),0) = 0, so the differential change df along the equilibrium curve
Ve(s) must vanish as well:
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dfz af(s’;‘;(s)’o)der 8f(sa;ev(s)a0) v’e(s)ds —0,

hence

—df(s,v,0)/0
v (s) = 2L 0)/9s
df(s,v,0)/dv
If the leading vehicle is outside the interaction range, we have v,(s) = 0 (second
condition of Eq. (IZ.2)). Finally, the condition 1Lm ve(s) = vg follows directly from
§—>00
the second part of condition (I2.T)).

[12.2] Rules of Thumb for the Safe Gap and Braking Distance

Subproblem 1. One mile corresponds to 1.609 km. However, the US rule does not
give explicit values for a vehicle length. Here, we assume 15ft = 4.572m. In any
case, the gap s increases linearly with the speed v, so the time gap 7' = s/v is inde-
pendent of speed. Implementing this rule, we obtain

s 151t 4.572m 4.572m

T = - = = = =
v 10mph 16.09km/h  4.469m/s

1.0s.

Notice that, in the final result, we rounded off generously. After all, this is a rule of
thumb and more significant digits would feign a non-existent precisionﬂ Notice that
this rule is consistent with typically observed gaps (cf. Fig.[5.7).

Subproblem 2. Here, the speedometer reading is in units of km/h, and the space gap
is in units of meters. Again, the quotient, i.e., the time gap T is constant and given
by (watch out for the units)

;_5_3m(gm) _ gm _ 05h _ 1,800
v v ~ km/h 1,000 1,000

1.8s.

Subproblem 3. The kinematic braking distance is s(v) = v /(2b), so the cited rule
of thumb implies that the braking deceleration does not depend on speed. By solving
the kinematic braking distance for b and inserting the rule, we obtain (again, watch
out for the units)

V2 V2 km\? 50
=" = ) = 2 m)s? = 3.86m/s%
25~ 0.02m <hv> 362/ m/s

For reference, comfortable decelerations are below 2m/s? while emergency braking
decelerations on dry roads with good grip conditions can be up to 10m/ s, about
6m/s? for wet conditions, and less than 2m/s? for icy conditions. This means, the
above rule could lead to accidents for icy conditions but is okay, otherwise.

Reaction to Vehicles Merging into the Lane

9 There is also a more conservative variant of this rule where one should leave one car length every
five mph corresponding to the “two-second rule” 7 = 2.0s.
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Reaction for the IDM. For v = v(/2, the IDM steady-state space gap reads

T
so+vT so+ %~
se(v) = =

NS \/ 1\

J-(z) V-

The prevailing contribution comes from the prescribed time headway (for so =2m
and 0 = 4, the other contributions only make up about 10%). This problem as-
sumes that the merging vehicle reduces the gap to the considered follower to half

the steady-state gap, s = s./2 = voT /4, while the speed difference remain zero. The
new IDM acceleration of the follower (with @ = 1m/ s2 and 8§ = 4) is therefore

| HORGS]
VIDM = all—|—) —
Vo S
(v=vo/2s=s¢/2) || _ 1 6_ so+voT/2\*
N 2 S¢/2

[
se(vV)=se(vo/2) e _ 4 2 _ 2
= 3a [1 <2> ] =16 m/s” = —2.81m/s".

Reaction for the simplified Gipps’ model. For this model, the steady-state gap in the
car-following regime reads s, (v) = vAt. Again, at the time of merging, the merging
vehicle has the same speed vy /2 as the follower, and the gap is half the steady-state
gap, s = (vAt)/2 = voAt /4. The new speed of the follower is restricted by the safe
speed Vgafe:

2 bvyAt
v(z+m):vsafe:_bAz+\/b2(Az)2+(V20) + 20

=19.07m/s.

This results in an effective acceleration

At) —
(dv) _ AN =) 6 g3y,
dr / Gipps At

We conclude that the Gipps’ model describes a more relaxed driver reaction com-
pared to the IDM. Notice that both the IDM and Gipps’ model would generate sig-
nificantly higher decelerations for the case of slower leading vehicles (dangerous
situation).

[12.4] The IDM Braking Strategy

A braking strategy is self-regulating if, during the braking process, the kinematically
necessary deceleration by, = v*/(2s) approaches the comfortable deceleration b.
In order to show this, we calculate the rate of change of the kinematic deceleration
(applying the quotient and chain rules of differentiation when necessary) and set § =
—vandv = —b% /b= —v*/(4bs?), afterwards. This eventually gives Eq. (I2.27) of
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the main text:

dr \ 2s 452

dbin  d (VP dvsy— 2%
dr dr

3 2
v % v bkin
= (1-—)= b— by
252 ( 2sb) sb (b= biin)

[12.5] Analysis of a Microscopic Model

Subproblem 1 (parameters). For interaction-free accelerations, vgate > Vo, SO Vgafe
is not relevant. Hence vy denotes the desired speed, and a the absolute value of
the acceleration and deceleration for the cases v < vg and v > vy, respectively. The
steady-state conditions s = const. and v = v; = v, = const. give

Ve = min(vo, Vsafe) -

Without interaction, vsare > Vo, SO Ve = vo. With interactions, the safe speed becomes
relevant and the above condition yields

Ve = Veafe = —aT + \/a2T2 +vZ+2a(s —s0)
which can be simplified to
s=50+Vv.T.

Thus, sp is the minimum gap for v = 0, and T the desired time gap. The model
produces a deceleration —a not only if v > vg (driving too fast in free traffic) but
also if v > vgpe (driving too fast in congested situations). Furthermore, the model
is symmetrical with respect to accelerations and decelerations. Obviously, it is not
accident free.

Subproblem 2 (steady-state speed). We have already derived the steady-state con-

dition
. $—50
Ve(s) = min | vy, )

Macroscopically, this corresponds to the triangular fundamental diagram

. 1—ple
0.(p) = min (vop, ;)ff)

where leff = 1/pmax = I + s0. The capacity per lane is given by Qmax = (T +
Lett/vo) ! = 1,800veh/h at a density pc = 1/(ler + voT) = 25 /km. For further
properties of the triangular fundamental diagram, see Section[9.6]

Subproblem 3. The acceleration and braking distances to accelerate from 0 to
20m/s or to brake from 20m/s to 0, respectively, are the same:
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0
Sa =8p = — =200m.

2a
At a minimum gap of 3m and the location xyop = 603m of the stopping line of
the traffic light, the acceleration takes place from x = 0 to x; = 200m, and the
deceleration from x; = 400m to x3 = 600m. The duration of the acceleration and
deceleration phases is vg/a = 20s while the time to cruise the remaining stretch
of 200 m at vyp amounts to 10s. This completes the information to mathematically
describe the trajectory:

jat* t <t =20s,
x(t) = q x1+vo(t—1) n <t<t=30s,
xa+v(t—h)—%a(t—1n)* <t <t;=50s,

where t; = 20s, t, = 30s and 3 = 50s.

Heterogeneous Traffic

The simultaneous effects of heterogeneous traffic and several lanes with lane-
changing and overtaking possibilities results in a curved free part of the fundamental
diagram even for models that would display a triangular fundamental diagram for
identical vehicles and drivers (as the Improved Intelligent Driver Model, IIDM).
This can be seen as follows: For heterogeneous traffic, each vehicle-driver class
has a different fundamental diagram. Particularly, the density pc at capacity is dif-
ferent for each class, so a simple weighted average of the individual fundamental
diagrams would result in a curved free part and a rounded peak. However, without
lane-changing and overtaking possibilities, all vehicles would queue up behind the
vehicles of the slowest class resulting in a straight free part of the fundamental dia-
gram with the gradient representing the lowest free speed So, both heterogeneity
and overtaking possibilities are necessary to produce a curved free part of the fun-
damental diagram.

[[2.7] City Traffic in the Improved IDM

10 Even when obstructed, drivers can choose their preferred gap (in contrast to the desired speed),
so the congested branch of the fundamental diagram is curved even without overtaking possibili-
ties.
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1. For realistic circumstances, the maximum possible flow is given by the dynamic
capacity, i.e., the outflow from moving downstream congestion fronts. In our
case, the “congestion” is formed by the queue of standing vehicles behind a
traffic light. Counting the trajectories (horizontal double-arrow in the upper di-
agram) yields

9veh
C=0mnax ~ 20s = 1,620veh/h.

2. Counting the trajectories passing x = 0 for times less than 5s, 15s, and 40s
(black bullets in the upper diagram) gives

n(5) =1, n(15) =5, n(40) = 15,

respectively. We determine 3 by the average time headway after the first vehi-

cles have passed,

1 40s—15s
B= C- 15-5 =2.5s/veh.

We observe, that B denotes the inverse of the capacity. The obtained value
agrees with the result of the first subproblem within the “measuring uncertainty”
of one vehicle[] This also gives the additional time until the first vehicle passes:
Tp = 155 — 5B = 2.5s. (Notice that this is nor a reaction time since the IIDM
does not have one.)

3. The propagation velocity of the position of the starting vehicles in the queue is
read off from the upper diagram:

~ 100m
20s

w = =

—5m/s = —18km/h.

' One could have calculated 3 as well using the pairs {n(15),n(5)} or {n(40),n(5)} with similar
results.
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4. We estimate the desired speed by the maximum speed of the speed profile
(lower diagram): vo = 15m/s = 54km/h. The effective length g is equal
to the distance between the standing vehicles in the upper diagram: pp,x =
1/legr = 10s/100m = 100veh/km, i.e., lsgr = 10m. Since the steady state of
this model corresponds to a triangular fundamental diagram, the time gap pa-
rameter T is determined by the propagation speed and the maximum density:
T = —ler/c = 2s. Finally, the maximum acceleration a and the comfortable de-
celeration b can be read off the lower diagram by estimating the maximum and
minimum gradient of the speed profile:

20m/s

a 10 m/s*, b

20m/s
Ts

Statistical Properties of the Ornstein-Uhlenbeck Process

To determine the expectation E (1(z)n(¢')) from the given formal solution 7(¢) to
the stochastic differential equation of the Ornstein-Uhlenbeck process, we insert the
formal solution into E (1(¢)n (")) carefully distinguishing the arguments ¢ and ¢’
from the formal integration variables #; and #,. This gives the double integral

=29m/s>.

Em(om / / )T (6 (1) (1)) dn .

[|=—00 [p=—0c0

Tz

Notice that the operations of integration and averaging (expectation value) are ex-
changeable. We now consider the case t > 1'. Setting E (§(11)€(12)) = 6(t1 —12) and
using the definition [ f(¢)5(¢)dt = f(0) of the Dirac §-distribution to eliminate the
integral over tllg yields

t/

E((nn()) = % / 2111/ 4,

th=—o00

which can be analytically solved resulting in

E(n(t)n(d)) =e /7,

If t < ¢/, the derivation proceeds analogously resulting in E (1(1)1(')) = e~ ¢ ~1)/.
Consolidating these two cases, we arrive at

EM()n()) =e 1.

As important special case, we obtain the variance E (n*(t)) = 1. Finally, when
we apply the averaging operation E (-) to the formal solution 1(¢) itself using the
condition E (£(¢)) = 0, we obtain E (1(z)) = 0, i.e., the second condition (12.46).

12 Since ¢ > ¢’ and the above integration property of the §-distribution only applies if the integration
interval includes zero (i.e., f; = 2), we cannot use this property to eliminate the integral over ;.
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This concludes the derivation of the statistical properties of the Ornstein-Uhlenbeck
process.

Driving in Curves

1. Anticipation is needed because some time may be needed to reduce the speed
from the actual speed to v§""'®. Moreover, for safety reasons, one should have
finished the deceleration maneuver before entering the curve.

2. For a finite lateral slope angle 3, the lateral acceleration relative to the road
surface consists of two components.

« Inertial acceleration v? /r multiplied with the projection factor cos 8 parallel
to the road surface.

» Lateral slope force: gravitational acceleration g multiplied with the projec-
tion factor —sin 8 (for a proper lateral slope, the slope force is directed op-
positely to the inertial force).

This gives Vi = V2 /r cos B — gsin 3 and, setting vi,, = b, the safe speed

r(b+gsinf)

=12.2 =44.0km/h.
cos B m/s m/

Vsafe =

3. The speed becomes critical if the ratio of the lateral and normal acceleration
(relative to the road surface) reaches the friction coefficient (. As the lateral
component, also the normal component has two contributions, one from the
gravitation (gcos3) and one from the inertial acceleration (v?/r sin ). This
gives a critical speed

N rg(pcosf +sinf3) =23.2m/s = 83.6km/h
crit cosB — wsinf ) ’ ’

When restricting to the lateral comfortable deceleration, the speed safety factor
until one slides out of the curve is nearly 2. Notice that the critical speed tends to
infinity for tan 8 = 1/u which is realized on some racing courses or test tracks.

Problems of Chapter [13|

3.1 Consequences of Estimation Errors
Overestimating the gap by 10%, i.e., by the factor 1.1 results in a smaller steady-
state gap. With the values of the problem statement, we obtain

_ so+vT
11

1.1s, =so+vI = s, =28.3m

instead of the “true” steady-state s, = 31.1m. When there is a constant additive
acceleration component gy, = 0.4m/ s2, the steady-state condition reads
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fe2S0 _y,

V= apr + TT 207

or s, = 5o+ vT — Ta; = 30.9m. Notice that the surprisingly small amount of change
can be tracked back to the “rigidity” of the OVM reaction caused by the small re-
laxation time 7.

[13.2] Multi-Anticipation for the IDM
Applying the general equation (I3.12) for multi-anticipative effects to the IDM gives

o 7\ 2 7\ 2
cZa(s(H,_v ) :a<s0—|—v ) )
& js s

J

hencec=1/(L%, ]%), i.e., Eq. (I3.13). Instead of introducing c, it is obviously pos-
sible for the IDM to renormalize the parameters so and 7 by multiplying them with

a common factor. For this purpose, we write the left-hand side of above equation as

Z ( Veso+vy/cT > ?

a\ —— )

= /3

so the factor \/c of the problem statement is evident. The factor 1/c assumes values
between 1 (no multi-anticipation) and v/6 /7 ~ 0.78 (multi-anticipation to infinitely
many leaders). This means, the numerical values of sg and T are reduced by no more
than 22%.

13.3] Wiedemann Model

1. Without the Heaviside function ® (Av + Avg) in (I3.28), the plausibility con-
dition (12.4) would be violated for Av < —Avg because, then, the acceler-
ation would decrease for increasing leading speed. The leading acceleration
has been added because only then this equation (for Avg = 0) is based on the
constant-acceleration heuristic: The follower brakes in a way that, under this
heuristic, the minimum gap s = sax is realized. (Avg acts as a safety contribu-
tion representing an uncertainty in estimating relative speeds.) Finally, adding
the term —bg to (I3.28) makes sure that, at least for v; < 0, Visliowing > Vorake
holds at the boundary between the following and the deceleration regime sat-
isfying (IZ.I) and also between the following and approaching regime satisfy-
ing and (12.4).

2. W-74 and W-99 accelerations for vo = 100km/h, v; = 0:

(i) If v=v; =20m/s, and s = 15m, both the W-74 and W-99 models are in
the braking regime and the acceleration (assumed to be the same) is given
by vw.74 = Vw99 = —0.95 m/sz.

(ii) If v=21.5m/s, vy = 20m/s, and s = 40 m, the W-74 model is in the ap-
proaching regime resulting in vy.74 = —0.66m/s> while the W-99 model
is in the free regime with vy.99 = 0.79m/ 52
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Problems of Chapter [14]

[[4.1] Dynamic Properties of the Nagel-Schreckenberg Model

To obtain physical units, we multiply the dimensionless desired speed of the NSM
with Ax/At. Thus, vo = 2 (city traffic) corresponds to 54 km/h, and vy = 5 (high-
ways) to 135km/h. Likewise, multiplying the dimensionless accelerations with
Ax/(At)? = 7.5m/s? yields the physical accelerations. In the deterministic NSM,
a=1,5s0 aphys = 7.5 m/ s2 resulting in an acceleration time of

Vphys
P —3.7s.
Aphys

T0—100 =

In the stochastic model, the acceleration a is realized only with a probability (1 — p).
So, the average acceleration time increases by a factor (1 —p)~! t0 6.2s.

Approaching a Red Traffic Light

The driver approaches with the desired speed vy until the distance to the traffic light
falls below the “interaction distance” g = vy. Then, there are two possibilities for the
deceleration process: (i) stopping in one step (if, after crossing the interaction point,
the gap in the next time step is already zero), (ii) stopping in two steps vo — vi — 0
(if the gap after crossing the interaction point is v; > 0). If vo = 2, the realized
decelerations are (i) —15m/s? or (ii) —7.5m/s.

Fundamental Diagram of the Deterministic Nagel-Schreckenberg Model
Without stochastic components, the steady-state speed as a function of the gap g is
well-defined:

ve(g) = max(vo, g)

meaning that the macroscopic fundamental diagram (in physical units) has the well-
known triangular shape given b

0:(p) =min |vg™*p. 7 (1- -2 ).

pmax

The values of its three parameters are

54km/h cities,

phys __ _
Vo = voAx/Ar = { 135km/h highways,

1
T=At=1S8, Pmax= i 133 veh/km.

In the stochastic model (p > 0), the average flow E (Q(p)) as a function of the
local density is below that of the deterministic case. The fundamental diagram is no
longer triangular, and also the gradients at zero and maximum density are different.
In the following two problems, we will derive

13 We drop the superscripts “phys” denoting physical quantities where no confusion is possible,
i.e., for p and Q. We will retain the superscripts for speeds and velocities.
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Ax

s ’ A s /
Vghy = 0,(0) = (vo _p)lv WP (Pmax) = @, (Pmax) = —(1 _p)E-

At

Macroscopic Desired Speed
Without interaction and after a sufficient time, the vehicle speed is either vy (no
dawdling in the last time step), or vo — 1 (dawdling). If v = vy, then the speed will
be reduced in the next time step to vop — 1 with probability p. If v = vy — 1, the
speed in the next time step will reach vy with probability 1 — p. The situation is
stationary in the stochastic sense if expectation values do not change over time,
E (v(t+1)) = E (v(t)). Here, this means that the probabilities for the speeds vy and
vo — 1 do not change over time, i.e., the unconditional “probability fluxes” from v
to vo — 1 and from vy — 1 to vy balance to zero Setting up the balance for the
speed state v = vy and denoting by @ the probability for this state, the probability
flux vy — vg — 1 away from vq is —0p (probability 0 times conditional probability
p; negative sign because the flux is outflowing). The “inflowing™ probability flux
vo—1—vpis (1—-0)(1—p) (probability 1 — 6 times conditional probability 1 — p)
. So, stationarity implies

%(Prob(v:vo)) =—-0p+(1-0)(1—p) 20= 0= 1—p,
or

E(Ww)=0v+(1-6)(vo—1)=vo—p.

In physical units, this means VPYs = E (v)Ax/At, i.e., the result displayed above in
the solution to Problem [14.4]

14.5| Propagation Velocity of Downstream Jam Fronts

Assume a queue of standing vehicles where only the first vehicle has space to ac-
celerate. This first vehicle will accelerate with probability 1 — p (with probability p,
dawdling occurs). Only if this vehicle accelerates, the next vehicle in the queue has
the possibility to accelerate in the next time step, which it does, again, with proba-
bility 1 — p. This means, the “starting wave” propagates at an average wave velocity
w=—(1—p)Ax/At. For p = 0.4, this yields the reasonable value w = —16.2km/h.

Problems of Chapter 13

[[5.1] Why the Grass is Always Greener on the Other Side?

We assume two lanes with staggered regions of highly congested traffic (p1,V;)
and less congested traffic (p» < p1, Vo > V1) of the same length: Whenever there is
highly congested traffic on lane 1, congestion is less on lane 2, and vice versa (cf.
the figure in the problem statement). Since traffic in both regions is (more or less)
congested and the fundamental diagram is triangular by assumption, the transitions
from region 1 and 2 and from 2 to 1 remain sharp and propagate according to the

14 Mathematically, this balance of probability fluxes is called a Master equation.
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shock-wave formula at a constant velocity

c:Mz—iz—Sm/s.

P2 —pPi T

The fraction of time in which drivers are stuck in the highly congested regions is
obviously equal to the fraction of time spent in regions of type 1. Denoting by 7; the
time intervals 7; to pass one region i = 1 or 2, we express this fraction by

T
T +T

Pslower = P1 =

When evaluating 7;, it is crucial to realize that the regions propagate in the opposite
direction to the vehicles, so the relative velocity V; + |c| is relevant. Assuming equal
lengths L for both regions, the passage times are 7; = L/(V; +|c|), so

L
itll __ Vadtld
Vo +V +2‘C‘.

p1 =
L _L_
Vitle| T Vate]

For example, if V| = 0 and V, = 10m/s, the fraction is

10+5 3

“10+10 4

P1

i.e., drivers are stuck in the slower lane 75% of the time — regardless which lane they
choose or of whether they change lanes or not.

Alternatively, one picks out a vehicle at random. Since the less and highly con-
gested regions have the same length, the fraction of vehicles in the highly congested
region, i.e., the probability of picking one from this region, is given by

200 3
P P, T 2004200/3 4

[@5.2] Amber Time Intervals — Stop or Cruise?
We distinguish two cases: (i) Drivers can pass the traffic light at unchanged speed
in the amber/yellow phase, i.e.,

§ <81 =VTy.

(ii)) When cruising, drivers would pass the traffic light in the red phase, so stopping
is mandatory. In this case, drivers need a reaction time 7, to perceive the signal,
make a decision, and stepping on the braking pedal. Afterwards, we assume that
they brake at a constant deceleration b so as to stop just at the stopping line. This
results in the stopping distance

2

v
s-vTr—l—%. &)
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Obviously, the worst case for the initial distance s to the stopping line at switching
time green-yellow is the threshold s = 51 between (i) and (ii), i.e., cruising is just no
more legal. Inserting s = s1 into Eq. () and solving for b gives

b= ————— = 3.47m/s’.

This is a significant, though not critical, deceleration. It is slightly below the de-
celeration 3.86m/s” implied by the stopping or braking distance rule “speedometer
reading in km/h squared divided by 100” (Problem [12.2)) but above typical com-
fortable decelerations of the order of 2m/s?. We conclude that the legal minimum
duration of amber phases is consistent with the driver and vehicle capabilities.

Trajectory Planning of a Lane Change
The trajectory and its derivatives are given by

y(t) =co+ert+ eat® + 3t + et + o5t
Y (t) = c1+2ct + 3c3t? 4+ deat’ + 5est”,
V'(t) = 2¢5 + 6¢3t + 12¢41* + 2051

Setting w = 7 = 1, we have the fixed constraints
¥(0)=y'(0)=y"(0)=0, y(1)=1, y(1)=y"(1)=0.

The conditions at t = 0 give immediately ¢y = ¢; = ¢ = 0. The remaining coeffi-
cients are given by the restraints at = 1 (end of lane change),

c3+cq4+ces =1,
3c3+4cq+5¢5 =0,
6¢3+12c4 +20c5 = 0.

Solving this linear equation with three unknowns give
Cc3 = 107 Cq4 = —15, Cs =6.

The unscaled coefficients of (I3.13)) are given by multiplying the found coefficients
cj withw/7/.

[15.4 Stop or Cruise Decisions Implied by Car-Following Models

1. This MOBIL decision criterion means that one brakes to a stop whenever the
braking deceleration at decision time is smaller than the safe braking decelera-
tion. Otherwise one cruises through the intersection. In sensible models as the
IDM, one tries to bring the situation under control whenever the required brak-
ing deceleration is above the comfortable deceleration b. Assuming bgse > b
this means that the initial deceleration is the highest, so a safe deceleration to a
stop is guaranteed.
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2. If the decision is “stop”, one assumes a virtual standing vehicle of length zero
at the stopping line, i.e., v; = 0 or Av = v. Evaluating the decision criterion for

the IDM gives
dv s*(v,v 2
=—a< (s l)) > —bgfe

dr
* 2
s (v, v
a( (S l)) < bgafe

MGGy

b safe

This means, the general critical gap is given by

§ > Ssafe(v) = 57(v,0) Denfo 10)
safe
3. For a = b = bg,¢e, we obtain for v = vy
v2
s> ssafe<v) = S*(V,O) =s9+voT + 27(;)

If the time gap parameter T also gives the reaction time, this is precisely the
minimum gap so plus the stopping distance with its components reaction dis-
tance vT and braking distance v /(2b). Specific values:

* vo=50km/h: sgpe =5*(v0,0) = 62m, Atgape = Ssafe/vo = 4.47 s
* vo=70km/h: sgpe =5*(v,0) = 114m, Atgare = Ssafe/vo = 5.865

4. The above critical distances and associated critical time intervals till passing are
too great. Considering that the minimum amber times for 50 km/h and 70 km/h
are given by 3 s and 4 s, respectively, this strategy may lead to crossing red traffic
lights. Of course, the reason is that the legislation imposes on the driver a safe
deceleration bgyg, that is somewhat greater than the comfortable deceleration b.
In this case, we obtain from the above general formula (I0) for bg,pe = 4m/ s2,

* Vo= SOkm/h D Ssafe = 44m, Atgape = Ssafe/VO =3.16s
* vo=70km/h: sgp =5*(v,0) =81l m, Atgae = Ssafe/vo = 4.145

There is still a minimal chance of passing a red traffic light if the amber/yellow
times are at their minimum allowed values of 3 s and 4 s, respectively. This is
due to an IDM imperfection: At the beginning of a stopping maneuver, the IDM
tends to “brake” a little too hard.

5. For the OVM, we have the critical gap

Vopt($) —v

VovMm = < _bsafe .

Because only the interacting range s < voT is relevant, this leads to



704 Solutions to the Problems

s/T—v

VovM = > —bgfe, = 5> Safe =T (v— Thgfe)

or s > Ssafe = T'(v — Thgate). For v=vp =72km/h =20m/s, t=T/2=0.5s,
and bgyre = 4m/ s2, this results in sgfe = 9.0m. This is much too low: For exam-
ple, one would brake if s = 10m. However, at this gap, the kinematic braking
deceleration to avoid crossing the stopping line (and stopping mid-intersection
instead) is given by by, = v2/(2s) = 20m/s?.

Entering a Highway with Roadworks
In this situation, we can apply both the safety criterion (I3.4) of the general lane-
changing model or the safety criterion of the decision model (I3.37) for entering
a priority road. With the notations of Fig. we obtain for a defensive driver
(Dsate = 0)

St > Sqafe (v, V) = Sopt(ve) = v¢T = 20m.

Here, we have dropped all hats, consistent with the convention adopted in Sec-
tion In the “worst case”, the driver decides to merge if the vehicle on the
highway is just sg,re = 20m away. Now we calculate the minimum deceleration by,
the driver on the main road has to adopt to avoid a crash. Applying the kinematic
braking distance s = Av?/(2b) to the critical distance sg,e = 20m, the initial speed
difference Av = v¢ = 20m/s, and the relative deceleration b = by, + a (assuming
that the merging vehicle accelerates at « = 2m/ s?), and solving for by, results in

We observe that, in spite of the very conservative assumption by, = 0 in the de-
cision model, the actually necessary deceleration of the main-road vehicle corre-
sponds to an emergency braking maneuver. This discrepancy can be traced back
to the OVM whose braking strategy is inconsistent with kinematic constraints and
does not contain the speed difference although this is a crucial exogenous factor (in
fact, the OVM simulation will lead to crashes in this situation). As shown in the
next problem, drivers modeled by the Gipps’ model or the IDM family will make a
consistent decision in this situation.

An IDM Vehicle Entering a Priority Road
In this situation (Fig.[I3.7lfor v; = 0), the IDM safety criterion (I3.37) reads

2
Vi

sg > S?,d)fl;/[(Vf,O) =

3
Afree (Vf) bsafe
a + a

or, with so = 0, v = vg, and a = b = bg,¢e (then, the square root is equal to 1)

2
Vi

IDM
St > Sgafe :va+2b =
sate
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This means, the minimum gap to allow merging corresponds to the stopping dis-
tance of the follower on the main road (braking distance v?/(2b) plus distance vT;
driven during the reaction time) when the desired time headway is set equal to the re-
action time, T = T,.. Consequently, the IDM safety criterion for merging is consistent
with the driver capabilities and kinematic constraints. For T = 1, bgpe = 2m/ s2,

and vo = 50km/h, we obtain as safe distance for merging s'oM = 31m.

[[5.8] Overtaking on the Lane for the Opposite Direction

1. For the rural road environment, the minimum safe gap to the oppositely driving
vehicle for a positive safety criterion is given by sgfe = 736 m resulting from
a displacement distance sqispi = 82m and the total overtaking time Tovertake =
10.1s.

2. The minimum initial gap to the oppositely driving vehicle when overtaking a
bicycle in the given city environment is given by sgf = 162 m resulting from
a displacement distance Sqisp; = 34m and the total overtaking time Tovertake =
3.4s. Remarkably, in the above typical cases, overtaking a truck on a rural road
requires more than four times the safe distance to the opposite driver than that
required when overtaking a bicycle in a city.

Problems of Chapter [16]

[@6.1] Characterizing the Type of Instability

The displayed traffic flow is locally stable since, after a sufficient time, each driver
reverts to the steady state (he or she stops, at most, once). At the same time, the
dynamics is string unstable since the amplitude of the oscillations increase from
vehicle to vehicle. The string instability is convective (of the upstream type) since
there is only a single traffic wave: After a sufficiently long time, traffic flow reverts
to the steady state at any fixed location.

[16.2] Propagation Velocity of Traffic Waves in Microscopic Models
At first, we transform the microscopic propagation velocity given in the comoving
(Lagrangian) coordinate system to a stationary coordinate system:

v, (se) .
Pe

™

= Ve + Crel = Ve — (se+l)v/e(S€) = Ve —

Here, we used the relation s, 4+ = 1/p,. Now we express the microscopic gradient
v.,(s) by the corresponding macroscopic quantity V. (p). Using the identity v, (s) =
V.(p(s)) and the micro-macro relation p = 1/(s+1), we obtain

Cdve dvedp  Vi(p)

ds  dpds  (s+02

ve(s) -p*V.(p)- (11)

Inserting this into the expression for ¢ gives the final result
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v, (se)
Pe

Instability Limits for the Full Velocity Difference Model

C=V,—

d
=Vo+ PV, (pe) = E(Peve) =0 (pe).

Subproblem 1. The local stability criterion is satisfied if
< 1 1 —1
fotfa==—2-7<0 = y>——=—-02"

This is true even for slightly negative values of the sensitivity ¥ to speed differences
(although this implies accelerations in response to positive approaching rates which
is no reasonable behavior). As such, it reflects the result that all reasonable (and
even some unreasonable) models without explicit delays (reaction times) are locally
stable.

Subproblem 2: For v > v, there are no interactions and, therefore, no instabilities.
If v < vo, we have v,(s) = 1/T, f, = —1/7, and fs, = —7. Inserting these rela-
tions into condition (16.27)) for an oscillation-free local car-following characteristics
yields

1.1 (1+y7)*.

T~ 47
Solving this quadratic inequality for 7y results in

1 2
> -+ -——=0.69s .
r= T Tz
Here, we used the general plausibility condition ¥y > 0 to select the positive sign of
the square root when calculating the numerical value.

Subproblem 3. To determine the limits of string instability, we use criterion (16.78)).
Solving the resulting inequality for 7y yields

1 -1
277—095 .

1
Y> T
We observe that car-following schemes may be string unstable even if they do not
produce any kind of oscillations (damped or otherwise) when following a single
leader. Here, this applies to the parameter range 0.69s~' < y < 0.9s~!. This is
highly relevant when investigating the effects of adaptive cruise control systems on
traffic flow.

Stability Properties of the Optimal Velocity Model Compared to Payne’s
Model

The OVM criterion for string stability reads v/,(s) < 1/(27), and the corresponding
criterion for flow stability in Payne’s model —V/(p) < 1/(2p?t). Using the micro-
macro relation v.,(s) = 1/p2V!(p) already needed for Problem [[6.2] we show the
equivalence by direct substitution:
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1 1
o ve(se) = =peVi(pelse)) = —Vi(p) < 277 q.e.d.
16.5 OVM with ‘“Pushing” from Behind
The long-wavelength stability criterion (16.94) can be written as

, 1 1+2
Yonl®) < 37 T AR

For A = 0.5, the second factor is equal to 6 increasing the string stability sixfold.
However, for very low leading speeds, the follower “pushes” the subject vehicle
into the leader even in the semi-static situation because the steady-state gap can drop
below zero. For the given triangular fundamental diagram and gaps below so + (voT,
the steady-state speed of the subject vehicle in the presence of at least one follower
is given by

§— S50

Ve(s) = (1 =A)vope(s) +Avg = (1 -24) < ) + Avg.

For a gap equal to zero, this becomes

This means for any A > (14-voT /so)~!, we have a finite steady-state speed at zero
gap. i.e., collisions. Assuming vop = 19m/s, T = 2s, and so = 2m, this is already
true for A > 0.05.

Flow Instability in Payne’s Model and in the Kerner-Konhéduser Model

Subproblem 1. 'We have solved the general flow stability problem for Payne’s model
already in Problem For the triangular fundamental diagram as specified in the
problem formulation, the gradient of the speed-density relation reads

0 P < pc,
Vi(p) =
c(P) {— P> pe.

with the density at capacity pc = 1/(voT + legr) = 20veh/km. For free traffic
(p < pc) there are no interactions (V,(p) = 0) and therefore unconditional stability.
Congested traffic flow (p > pc) is stable if

‘L'<T
h

This means, Payne’s model describes stable congested traffic for unrealistically
small adaptation times 7, only.

Subproblem 2. For the Kerner-Konhiduser model, the flow stability criterion reads
(pV.(p))? < 6. Inserting the steady-state relation V,(p) = max[Vp,1/T(1/p —
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1/Pmax )] gives, again, unconditional stability for free traffic flow (p < pc =20 /km)
which is consistent with the requirements of the problem formulation. For congested

traffic (p > pc), we have
1

p2T2 < 6y.

From this condition, we determine 8 by demanding that congested traffic flow
should be unstable for densities below p3 = 50 /km, and stable above. With 7 =1.15s
and p3 = 50 /km, we finally obtain (cf. the figure below)

e stable

Kerner—Konhzuser (KK) Model

instable

/

stable

p crit p 3

Flow Instability of the GKT Model

For high densities near the maximum density, we can approximate the GKT steady-
state flow by Qe ~ 1/T(1 —p/pmax)s or V,(p) = —1/(Tp?) = —1/(T pmax)*.
Without anticipation (Y = 0) and assuming a constant speed variance prefactor
Clmax = 0(P) ~ 0t(Pmax) Which is equivalent to P, ~ 67 & Otmax V.2, the GKT stabil-
ity criterion becomes

(pV,)? — P = T%pz — OnaxV? < 0.
Since, for p — Pmax. the expression (7'p)~2 tends to the squared propagation veloc-
ity ¢ of moving downstream jam fronts while the speed variance otmaxve2 tends to
zero, the stability criterion cannot be satisfied: Without anticipation, the GKT model
is unconditionally unstable for sufficiently high densities!

For a finite anticipation range s, = YV, T, however, the third term of the stabil-
ity condition can stabilize traffic flow. Sufficiently close to the maximum
density, we can approximate the full GKT flow stability criterion to an analytically
tractable condition. If p &~ pnax, we have, up to linear order in V,

1
pV, ~ _ﬁ7 P~ ocmaXVe2 ~0, s,(Vo—V.) =y WT.
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Furthermore, with Pax/(Pmax — P) = (pV.T)~!, we can approximate the bracket
of the last term of Eq. (16.130) by

Pmax pv. ] 1 < , 1 >
— ~ + .
Pmax — P GVﬁ p VeT v/ Olmax
Inserting all this into the GKT stability condition (I6.130), we find that the GKT

model is string stable for densities near the maximum density if the anticipation

factor y fulfills
T

>
2szmaxvo [1 + (amaxn')il/z]
which is condition (T6.137).

IDM Stability Class Diagram for other Parameter Values

In the following, we will denote the scaled dimensionless quantities with a tilde.
According to the problem formulation, the scaled time and space coordinates as
well as derived variables (speed, acceleration) are related to the unscaled quantities
as

Y

- d dv
t= %Ot, x=s50X, v=+/bsgV, d—:zbd—;.

Inserting this transformation into the IDM equations results in
v a { bsyv 4 7\ 2
i b ) § ’
s* b .. b VAV
=—=14+4/—TV—/——.
S0 S0 a 2

As a consequence, the prefactors of the different new terms are dimensionless as
well. Moreover, they come in only three combinations of the original IDM parame-
ters which we can identify as the new model parameters:

“y

. ANl . VAP

This allows a powerful conclusion{J Changing the five physical IDM parameters
such that ¥, f, and T remain unchanged does not change the scaled IDM equations,

15 In hydrodynamics, such scale relations are the basis to measure the hydrodynamics of big objects
(ships, planes etc.) by observing a scaled-down (physical) model of the object in a wind or water
channel rather than observing/measuring the real thing.
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nor the local dynamics. This allows to reduce the five-dimensional IDM parame-
ter space spanned by Vo, T, a, b, and sy to the three-dimensional space (Vp,T,d)
spanned by the dimensionless parameters. However, the stability class depends not
only on the local dynamics but also on the vehicle length influencing the macro-
scopic fundamental diagram Q,(p) and the sign of propagation velocities. There-
fore, to ensure the same stability class, a forth dimensionless parameter

iZl/So

must be kept constant.

When applying these insights to the concrete problem of where to read off the
stability class in the a-T-class diagram when other IDM parameters are changed,
we observe that this is only possible if speed is changed proportionally to changes
of v/bsg and the vehicle length changes proportionally to sg. Only then, the two
scaled parameters ¥ and [ containing neither @ nor T remain unchanged. This is
fulfilled here since so does not change anyway and the new values v = 139km/h
and b* = 2m/s? of the desired speed and time headway, respectively, satisfy ¥y =
vo(bso)~'/? = vj(b*s0) /> = const. In order to make sure that f and 7' remain
unchanged as well, we read off the old diagram at the coordinate (T*,a*) = (1T, ota)
rather than at (7', a). We fix the scaling factors 7 and ¢ to fulfill the conditions

a a Qa Ib | b* | b*
- - T *:T* 2 1T o
b b* b+’ S0 S0 t S0
b b*
=4/—=0.87 = — =1.33.
Ve 4T

This means, for the new values of vy and b, one reads of the class diagram at 0.87
times the original 7' coordinate and 1.33 times the original a coordinate.

Fundamental Diagram with Hysteresis

resulting in

Subproblem 1. Maximum free-traffic flow:
Qe —yopltee — 2 400veh/h.

Subproblem 2. The congested part of the fundamental diagram corresponds to the
congested part of the triangular fundamental diagram for the parameters Qcong () =
1/T (1 — plegr) where Lo = I + 5o = 6.67 m. This congested branch intersects the free
branch at the same point (pc, Q?ny&) that would correspond to the maximum of the
triangular diagram without hysteresis:

1
M — po = ————— = 16.67 veh/km.
pmm pC vOT+leff ve / m



Solutions to the Problems 711

Subproblems 3 and 4. The jam outflow is characterized by the dynamic capacity
Qﬂly;; = vppc = 2,000veh/h. This describes a capacity drop of

AQ = Qfc _ oW — 400veh/h  (or 16.7%).

The density of the outflow is given by pc. This means, hysteretic effects can take
place in the density range p € [pc, pir¢], or, numerically, p € [16.67 veh/h,20veh/h].

4800
4200

3600
3000 /
2400 /
1800 /
1200 /
600 /
0

Flow Q [veh/h]

0 40 80 120 160 200 240 280 320
Density p [veh/km]

Problems of Chapter 17

[@7.1] Measures of Performance
Following data are suitable for determining the different measures of performance
(MoPs) of the problem statement and running the appropriate simulation

(i) Acceleration of vehicles: Trajectory and extended floating-vehicle data (XFCD).
This data also provides the simulation of a microscopic model with the needed
inputs gap and leading speed. Normal floating-vehicle data without leading-
vehicle information or stationary detectors are not applicable.

(i) Speed of vehicles: Trajectory data, XFCD, and stationary double-loop data
(SDD). With the first two data categories, the simulation setup is the same
as above. With double-loop data, local and average speeds as well as speed
variances can be calculated and used to estimate microscopic and macroscopic
models.

(iii) Gap to the leading vehicle: Data and simulation as for the accelerations as
MoP.

(iv) Realized travel time: Of course, travel time series but also trajectory data to-
gether with a microscopic simulation or SDD together with a macroscopic
simulation. In the microscopic simulation, the travel time is given directly
by the corresponding trajectories, in the macroscopic simulation, the realized
travel time at time ¢ (cf. Sect. 22.1)) is given via the virtual trajectory extracted
from the macroscopic speed field V (x,7) by

dx
@ = V(x,t/)
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with the final condition
x(t) = x.

Notice that XFC data are unsuited because, then, only leader-follower pairs
can be simulated and the follower essentially has the same realized travel time
as the leader.

(v) Flow at a given location: Since flow is an extensive quantity, only sources with
extensive data are eligible, i.e., Trajectory data or SDD.

(vi) Flow-density data at a given location: Likewise.

(vii) Local lane-changing rate: Microscopic data needed, i.e., trajectory data or
XFCD. Since the lane-changing rate is intensive, no extensive input (density
or flow) is needed and the local lane-changing rate can also be estimated from
the sample of the XFCD provided these data contain sufficiently many lane
changes.

17.2| Goodness of Fit Functions

Calibration means minimizing (or maximizing) a GoF function S(3). However, the
GoF value itself is not relevant for the calibration but the argument 3 minimizing or
maximizing this function. If f(-) is a strictly monotonously increasing or decreasing
function with f/(x) # 0 everywhere in the allowed range, we have

ar(s as as
M:f’(‘g)izo & = =0,
9B 9B 9B
since f'(S) is strictly nonzero, i.e., an unchanged calibration result. Specifically, the
square root (going from MSE to RMSE) is such a strictly monotonous function as is

~1/2
multiplication with the constant [Zle (y?ata)z] (going from the RMSE to the
SRMSE).

Compatibility of Measures of Performances with Goodness of Fit Func-
tions

Relative GoFs such as RMSPE or MAPE: Not any y%% may be zero (as it may
happen for the speed) because, otherwise, these MoPs are not defined. Possibly
negative y?m (accelerations) are not allowed either because they contradict the very
concept of relative errors denoting “standard deviation divided by expectation”. Fi-
nally, plausible error measures are translation invariant, i.e., do not change when
adding to the positions a global constant (e.g., going from local coordinates to geo-
coordinates). This excludes positions from relative and standardized GoFs but not
from absolute GoFs (RMSE, MAE) which remain unchanged when going from gaps
to positions.

Standardized GoF's such as SRMSE: In contrast to relative MoPs, y}lata =0 is al-
lowed for some i because only the sum and not single data points are in the denomi-
nator, i.e., the speed is a valid MoP. Positions and accelerations are excluded for the
same reasons as for the relative GoFs.
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[I7.4) Influence of Serial Correlations on Measures of Parsimony

Given are 20 data points (s;, v;) of which the first ten and the second ten are identical.
This means, Model (i) can fit, at least, ten data points exactly, while Model (ii)
fits the data to 100%, after calibration. In contrast, if the data were not serially
correlated, Models (i) and (ii) will fit at least one and two data points, respectively.
This result does not depend on the specific model, since the same would apply to,
say, the models (i) ¥(s) = In(fBo/s) and (ii) ¥(s) = In(Bo/s + B1). This means, even
completely nonsensical models fit one additional data point per parameter if the
data points are independent, but they fit ten additional points if they are serially
correlated as in this example. Now assume a nonsensical addition to a given model
introducing one new parameter. For i.i.d. errors in the data, a parsimony test such
as the likelihood-ratio test would yield a negative result for the augmented model
since each parameter can always fit one additional data point without increasing
its predictive value which such tests take care of. However, for correlated data as
above, this parameter explains ten additional points. For robustness tests assuming
i.i.d. errors, this corresponds to nine nontrivial fits which such tests may erroneously
interpret as worth the additional parameter.

Problems of Chapter 18

[18.1] Phase Diagram for Stability Class 3
For class 3, there are no traffic-flow instabilities and no hysteresis. Therefore, one
just distinguishes between free traffic and homogeneous congested traffic:

Q main [veh/h]

Free Traffic

Qmp [veh/n]

Furthermore, since no instability also implies no hysteresis effects, there is only one
phase diagram valid for both small and large initial perturbations.

Boundary-Induced Phase Diagram

The kind of extended congested pattern (TSG, OCT, HCT) is directly defined by the
supply restriction Q. Because of the oscillatory nature of the congested states for
comparatively high values of Qq,: (OCT and TSG), significant perturbations arrive
at the upstream boundary activating the “inflow-bottleneck™ if Qy, > Cayn (remem-
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ber that we have I = 1 lane). If, additionally, Qout > Cayn, the potential outflow
is higher than the inflow restricted by the activated inflow-bottleneck. This means
there is free traffic in the bulk of the investigated road section corresponding to the
maximum-flow state. If, however, Qout < Cyyn, congested traffic will arise every-
where and the inflow-bottleneck (whether activated or not) is no longer relevant.
Therefore, the maximum-flow state requires both Qi > Cayn and Qout > Cayn. This
results in following boundary-induced phase diagram:

Max-
TSG | flow
£
(o4
Free Traffic

Q out

The situation with an activated inflow bottleneck corresponds to the stationary front
of a bottleneck in inhomogeneous systems. However, since no upstream region is
simulated here, the stationary front appears as a “standing wave”. In simulations, ac-
tivated inflow bottlenecks are a serious problem since they introduce bottlenecks not
corresponding to anything in reality. Dedicated and very complex upstream bound-
ary conditions (not discussed here) are necessary to avoid them.

Problems of Chapter 19

[19.1] Assessing a Mass Event

1. The bottleneck is the region with the lowest local capacity. Without counterflow
and obstacles, the capacity is given by

C = Jmax?',  Jmax = 1.25ped(ms) !,

where the value for the maximum flow density has been read off the maximum
of the Weidmann flow density depicted in Fig.[19.2] In the tunnel sections, we
have a total width w'® = 40m while, in the ramp section, there is only one
pedestrian stream with a width of 30 m. Therefore, the bottleneck is at the (be-
ginning of) the ramp section and its capacity is given by

C = 1.25ped(ms) ~'30m = 37.5ped/s = 135000 ped /h.
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2. With a capacity of 135000 ped/h, the approach network can manage the initial
demand. After a surge to Q;, = 170000 ped/h, the tunnels are still able to man-
age the demand (since their total capacity is 1.25ped(ms)~!50m = 50ped/s =
180000 ped/h) while the ramp is not. Therefore, we expect a breakdown at the
begin of the ramp section

3. On the upstream free-flow side in the tunnel, we have

_ Qin
40m

where p; has been read off Fig.[19.2[left) for the Weidmann FD. Likewise, we
have on the congested downstream side in the tunnel

Ji = 1.18ped(sm)~!, p; = p™(J;) = 1.1 ped/m>

c
Jo = 35— =094ped(sm) ", pr=p*"E()r) = 3.5ped/m”.

With the shockwave-formula, the propagation of the congestion front is given
by
J—J
Ci2 =
P2 —P1
and, after one hour of increased demand, the congested region in the tunnels is
—c123600s = 365m long.

=—0.101m/s

[19.2] Weidmann’s Fundamental Diagram
1. The three parameters of the Weidmann model have following meaning

* vp: desired speed (since this is the steady-state speed for p — 0)

*  Pmax: Maximum density (since at this density the steady-state speed tends to
Zero)

* A: form factor. For small values, the density at capacity is rather low while
for high values (A = ppax or higher), the e function of the Weidmann model
only leads to significantly decreasing flows for densities near the maximum
density.

2. Comparing the Weidmann model (I9.7) with the steady-state solution of the
Social-force model (SFM) for a series of single files, we can identify
the effective radius R of an SFM pedestrian and the range parameter B as

R—— | =0.215m, B=YPmx _joim.
2\/pmax A

Kinetic and Potential Energy of the Social Force Model

Without free-flow forces and for a pedestrian moving straight to a standing pedes-
trian (assuming, without loss of generality, a motion in direction of the x axis), the
acceleration of the moving pedestrian reads

16 In fact, this was the location of the accidents caused by the stampede of the Loveparade event.
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dv, 0P

@ T o
For a circular or elliptical I specification, the social-force potential exerted by the

standing pedestrian is constant. So, by multiplying both sides of the above equation
with v, we can integrate the equation as follows

dvy P dP dx

AT T T T oxar
d /1, do
Z(Z2) 2 22
dr\2* dr
—vi = —P(x)+C.

The integration constant can be determined by assuming an initial speed v., suffi-
ciently far away from the target pedestrian (x — —oo) where @ (x) =0, s0 C = 1/2v2
and

V2 (x) =v2 —20(x).

X

In order to not collide or touch with the pedestrian (assumed to be circular with
radius R), the moving pedestrian needs to stop before reaching |x| = 2R (pedestrian
radius R), so

1
®(2R) > Evi
which is for € : |x| <2R.

Limits of the Self-Driving Force of the Social Force Model

In the best case, a pedestrian i driven by the free-flow acceleration (vo —v;)/7 in
x direction (x < 0) towards another pedestrian j at (x,y) = 0 is already standing
immediately at pedestrian j, i.e., x; = —R. In this situation, the static repulsion force
—@'(x) needs to overcompensate the free driving force:

Yomvi _ Yo _ @' (x) — Ao /B

T T
With a radius R for both pedestrians, we need to require for the relaxation time 7 the
condition
_ Y0, 2R/B.

A

which is Eq. for Ry = R,. In order to avoid collisions for other cases as well
(moving instead of standing pedestrians), the relaxation time 7 should be signifi-
cantly higher than 7.

Consistency Order of the Velocity Verlet Scheme As in Chapter[16] we de-
fine a function f(7) to be of the “order” symbol &(7") if lim;_,o f(7™)=0 for any
m < n. For notational simplicity, we ignore the sums, indices and vector proper-
ties of the SFM equations of motion (neither of them does influence the numerical
properties) and write the Velocity Verlet scheme as

T>7T
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X = x+vAt+ S fAL,
f=fW ), W=vifar (12)
Vo=vg(f+f)Ar

where the dashed quantities are the numerical approximations taken at the time 7 +

At and the not dashed ones at time 7. Obviously, due to its ballistic nature, the
positional discretization error

Ax=x(r+ Ar) — ¥

where x™ (1 + At) is the exact solution of the SFM for the initial conditions x(¢) = x
and v(t) = v is already of &'(At?) while the Euler predictor vF for the speed is only
O(At?), i.e., the ballistic scheme with the Euler speed update is only of local order
O(At?) and global order 0'(At).

In order to assess the consistency order of

Av=vl(r 4 Ar) -/
we make use of the assumption that the first partial derivatives of the forces,

af _ af _
azfxa E:fw

are finite and expand f to first order in x and v,
fx4+Ax,v+Av) = f+ frdx+ f,Av+ O(Ax, Av)?
With the second line of (I2)), we transform this in an expansion around z:
' =fVE) = f+ fovAt+ fofAt + O(Ar)?
Notice that we have already ignored the term % fof (A)? which is of ©(At)3. Insert-

ing this into the velocity update of (12)) finally gives

v :v—i—%(f—&-f/)At:v+fAt+%(fo+fvf) (At)2+ﬁ(At)3.

So, both the positional and velocity updates of the Velocity Verlet scheme are of
third local and thus of second global consistency order. This derivation also indi-
cates that a higher consistency order is not always better. If we have physical inter-
actions, the equations of motion are stiff meaning that the gradients f, and f, are of
high absolute value making the global error to scale with (At)? but with a very big
prefactor particularly relating to the f, f product term.

Free-Flow Speed of a Pedestrian Cellular Automaton
The three allowed cells are associated with the displacement vectors

o 0 . Ax1 _ sz
A’I‘Q—(O>7 AT1—<Ay1>, ATQ—(Ay2>,
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where the components are related to the absolute displacement 0, L, or Lv/2 (with
the cell size L) multiplied by straightforward trigonometric functions. For a given
desired velocity vy = vpe,, we have three equations for the three unknowns pg, py,
and p, corresponding to the expected displacement vectors and the probability sum
condition,

E(Ax) = p1Ax1 + p2Axs =Ty,
E(Ay) = p1Ay1 + p2Ay2 =0,
po+p1+p2=0.

If Ay; =0, we have from the second equation p; = 0, hence

T
Ay;=0:  py=0, p1=2)—x", po=1-pi, Axy=LorLv2
1

Likewise, if Ay, = 0, the probabilities are

VoTy

= , po=1—pa, sz:LorL\@
Axo

Ay, =0: r1=0, p2
If neither Ay; = 0 nor Ay, =0, the grid is not oriented towards the destination and
the non-degenerated solution of the above equation system reads

= Y0TgAy2 p2= —plﬂ po=1—-pi—p2
Ax1Ay, — AxAyy’ Ay’ '

P1

Obviously, we need to require vo7,/L < 1. Otherwise, the probabilities are not al-
ways restricted in the range 0 < p; < 1.

Problems of Chapter

Overtaking Two Slower Vehicles

1. For A = 0, followers have no influence on the leaders, so the two leaders will
not make space for the motorcyclist to pass.

2. The lateral dynamics of the follower is driven by the lateral repulsive forces
from both leaders. Because they both have the same speed and the same lon-
gitudinal position, the situation is symmetric and the follower will be laterally
centered with equal lateral gaps sy to both leaders.

3. Once laterally centered, the passing will succeed if, at a speed v = vy, the lon-
gitudinal acceleration is positive during the time of longitudinal overlap where
the two vehicles are still the leaders (greater coordinate x). From Eq. (20.12) we

obtain
dv

o =S = 10 (0) — b exp <_S‘> >0

S Oy
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and solving for the critical lateral gap giving a positive acceleration at speed vy,

. b
SR .
Sy Soy I (ftree(vl)

Notice that only the most interacting leader is considered, also if, as here, both
leaders exert the same force.
4. Inserting the numerical values f7°°(v() = 1m/s?, byax = 9m/s?, and sg; =

0.2m gives s = 0.44m.
Fundamental Diagram for Single-File Traffic

1. Because only the most interacting leader and follower matters for the longitu-
dinal dynamics, the acceleration consists of five forces: free-flow force, inter-
acting force from leader and follower, and the two boundary forces. Because
of the lateral boundary forces, the subject vehicle will center itself on the road
with equal gaps s,; to the boundary:

1%

= L)+ £ ) = AP s ) = 2omep (2 ) (L)

Sob 140

In the steady state, we have v = 0, same speeds v = v; = vy of subject, leader,
and follower, and same gaps s = s of the subject to the leader and the follower
to the subject. Thus,

0= £(v) + (1= 1) (5, 1) — 2 fp max €XP (—Syb> (v) .
sob/ \ Vo

2. The FVDM interaction force at the steady state for gaps so < s < so+voT is
given by

T T T

: Vopt(8) —v  vo—v 1 [s5—35
fFVDM,m[ _ fFVDM _ fFVDM,free _ opt () Vo _ ! ( _ 0 —v0> .

Notice that the FVDM relative-speed term proportional to y drops out at the
steady state.

3. We consider separately the case of free traffic flow (only interactions with the
road boundaries) and interacting traffic.

Free traffic. Here, we have fCFi"(s v, v) = 0 and we obtain the condition

0= ffree(v) - 2fb,max eXp (_Syb> <V)
Sob V0

vg—V Svb Y
- B Zfb’max eXp <_)) <)
T Sob %0

which can be solved for v as
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S
v=vy=w/f, f= {1 JrZTfib’maX exp (yb)] .
V0 S0b

Interacting traffic. For A =0, we do not need a decomposition of the FVDM
in a free and interacting force. At steady state with a gap so <s < so+v§T, the
force balance reads

1 /s—50 Svb %
0=— —v]=2 < _» — .
T ( r V) To.ma exP( S0b> (V0>

Solving for v gives

v:ve:S7SO, T*TfT|:1+2be’max exp(%l))}

Vo S0b

This means, the time gap T* is increased by a factor of f > 1 by the boundaries,
and the steady-state speed is reduced by the factor 1/f.
4. Even without leading vehicles, the boundaries reduce the desired speed and
the factor 1/ shrinks exponentially when increasing the gaps to the boundary
which both is plausible: Drivers generally do not traverse very narrow roads
at the same desired speed that they would use for a wider road. With leading
vehicles, the influence of the road boundaries increases the desired gap by the
factor f or, at a given gap, the speed is reduced by the factor 1/f as in the
free-flow scenario.
Numerical value for f if the road is as wide as the vehicle (s,;, = 0): f = 2.0.
6. If there are solid structures at the sides of the road, it would not be a good idea to
drive at half the desired speed grazing the structures. For this case, the boundary
interaction needs to be changed, e.g., by an additional factor sop /sy, diverging
for lateral gaps tending to zero.

b

Problems of Chapter 21]

21.1] Locating a Temporary Bottleneck
From the data of floating car 3, we know that this car leaves a jam, i.e., crosses its
downstream boundary, at the spatiotemporal point A depicted in the diagram below.
From the data of detector 2 (point B), we know that this front is moving. We can
exclude that the transition from congested to free traffic recorded by detector 2 at
point B corresponds to a downstream moving upstream front because (i) detector D1
records essentially constant traffic flow, (ii) the data of the detector D2 and the float-
ing car 3 imply an upstream propagating upstream jam front, i.e., a growing jam.
Hence, the upstream front is propagating backwards as long as it exists.

From Stylized Fact 2 we know that downstream fronts are either stationary or
move at a constant velocity ccong. Hence, the set of possible spatiotemporal points
indicating when and where the road closure is lifted, lies on a line connecting the
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points A and B at a position x > x4. The end of the road block not only sets the down-
stream jam front into motion but also leads to a transition empty road — maximum-
flow state. The shockwave formula implies that this front propagates with the
desired free-flow speed vg. Microscopically, this transition is given by the first car
passing the accident site. This car is recorded as first trajectory of the trajectory data
from the bridge at point C. Assuming, for simplicity, an instantaneous acceleration
to the speed vy, another set of possible spatiotemporal points for the removal of the
road block is given by a line parallel to the first trajectory and touching it at point C
(dashed line in the diagram). Intersecting the lines AB and the line parallel to the
trajectories and going through C gives us the location and time of the lifting of the
road block by the intersecting set of the two lines (point D), and also the location of
the accident.

To estimate the time when the accident occurred, we determine the intersection F
of the line x = xp of the temporary bottleneck, and the line representing the extrap-
olation of the last trajectory (point E) to locations further upstream (dashed line).
Finally, because of the constant inflow recorded by D1, we know from the shock-
wave formula that the upstream jam front propagates essentially at a constant ve-
locity, i.e., it is given by the line intersecting F and G. The jam dissolves when the
upstream and downstream fronts meet at point H.

Trajectory Data
(Bridge)

Call 1

Call 3

No Data

21.2] Estimating the Location of a Jam Front from Stationary Detector Data
The qualitative situation is depicted in following figure:
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Outflow 1500 veh/h

0 t 3600 s s

2

The transition between the two free-flow states “normal demand” (light green
in the figure) and “rush hour” (dark green) propagates at the velocity Vp =
4km/120s = 120km/h. The same propagation velocity also applies to the
boundary between free flow and outflow confirming Vp =2km/60s = 120km /h.
Furthermore, the outflow is equal to the bottleneck capacity, hence Cg =
1,500 veh/h.

. Since the velocity of the transition jam-outflow is zero, the flows of the two

states must be the same. Hence, the reading Q> = 1,500 veh/h of Detector D2
after . = 1,270s confirms the bottleneck capacity. To calculate the velocity cyp
of the transition rush-hour flow to congestion, one needs to solve the equation
for the propagation times of the transition fronts,

XB X2 —XB
fre =+ )

Vo Cup
for cyp resulting in
X2 —XB
Cup = ——5 = —0.893m/s.
Ie — Yo

The traffic breakdown occurs always at the bottleneck, so, we go along the jam
front back in time to arrive at

XB —XD2
Toreakd = toe — ———— = 150s.

|Cupl

. With w = —5m/s, the shockwave propagation formula for ¢ > t, gives the same

result:

c“p - Qmsh*QQ::asxh - gn]iax_QB =—0.893 m/s
(One could also solve the shockwave formula for w to obtain the estimate di-

rectly).
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4. The information from the upstream Detector D1 that the rush hour is over prop-
agates with V) towards the upstream jam front. The time where this transition
fronts meets the upstream jam front defines the time ¢, of the maximum jam
extension: With respect to the observed transition time #,. at D2, the crossing
condition reads

X2 + cup (tm — t2c) = xp1 + Vo (tn — 3,600s).

Solving for t,, gives t,, = 3,656s. Vehicles arriving at the jam at time #,, (or
passing D1 at the time 3,600 s where the rush hour ends) will encounter a jam
of length

Imax = |Cup|(tm - tbreakd) =3,130m

resulting in a time delay of

; 1
Tdelay = lmax (ZJAam - V()) =240 S,
jam

where Qjam =0 = l,SOOVCh/h and Pjam = Qmax(l/V() — l/W) + Qjam/w =
44 .4veh/km have been used. Notice that, in order to get the delay time, we need
to subtract the free-flow travel time L/V} from the “jam time” liax Pjam / Ojam-

5. The dissolution time is easily obtained by the crossing time of the downstream
moving jam front after the rush hour (Q;, = 1,200veh/h, propagation velocity
c{lp > 0) with the bottleneck location:

Oin — OB

r_ _
Cup B Qin—Omax + Omax— 0B —241911’1/8,
Vo w
l
fdiss = Im+ —— =4,950s.
cup

Once the jam has dissolved, the front between the states outflow (Q = 1,500 veh /h)
and the normal demand (Q;, = 1,200veh/h) propagates at velocity Vp, i.e.,
reaches D3 just a time interval Ar = (x3 —xg)/Vp = 30s after the dissolution.

6. Additional FC trajectories give information (x;*,#;”) about the location of the
jam front at a given time. These additional data points can be used to calibrate
the LWR parameters of the shock-wave formula (©.43) in real time using as
MoP the location of the jam front. Of course, in reality, we have fluctuating
demand and predicting the jam front at the FCD times #;"” using implies
solving a delay-differential equation. Still, this is straightforward.

Problems of Chapter 22]

22.1] Criteria for Estimating Travel Times by N-Curves
This method works exactly on roads with a single lane per driving direction and
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without ramps or other non-flow-conserving bottlenecks. Without floating cars,
initialization and corrections of the cumulated vehicle numbers are possible on a
heuristic basis, only. If the past speed data indicate free-flow speed and there are no
fast-growing differences N; — N; between the N-curves of the detectors i and j, one
assumes that there is free traffic in between, and initializes/corrects the N-curves
by Eq. 22.10) with the density estimated by the average flow divided by the av-
erage speed. During the evolution of a jam (indicated by fast growing differences
N; — Ni+1), there are no correction possibilities without floating cars.

Estimating Travel Times from Aggregated Detector Data

Subproblem 1. The following figure displays two possibilities leading to the ob-
served zero traffic flow at detector D2 between 16:00 and 16:30h: (1) The accident
happens upstream of D2 causing a temporarily empty road (p = 0, Q = 0) near the
detector location D2. (2) The accident happens downstream of D2 causing tempo-
rarily blocked traffic (p = pmax, @ = 0) near the detector location D2.

empty

empty { .
kg9 road section

road section / Outflow

from jam

Outflow
from jam D2

D2

D1 constant constant

inflow inflow

-
|

16:00 16:30 1700 t 16:00 16:30 17.00 t

Subproblem 2. Assuming a free-flow speed of 120 km/h, it takes 7j =2min = 120s
to pass the 4 km long section between the detectors D1 and D2. In this time interval,
An = 60 vehicles have passed D1. Setting the cumulated vehicle count N;(0) =
0 for the time 16:00h (corresponding to ¢ = 0), we obtain N,(0) = 60. With this
initialization, we calculate the cumulated vehicle count as a function of time, i.e.,
the N-curves, N;(¢) and N»(¢), by piecewise integration of the flows given in the
problem statement:

60+0.5¢ t < 2,520,
Ni(t) = 1,320 2,520 <t < 3,000,
1,320+ (r —3,000) =t — 1,680 3,000 <t < 3,480,
1,800+0.5 (r—3,480) =60+ 0.5t > 3,480,
and
051 t <0,
No(1) = 0 0 <t < 1,800,
t—1,800 1,800 <r < 3,600,
05¢ t > 3,600.

Subproblem 3. Sketch of the N-curves:
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The realized travel time 7j2(¢) at time t+ = 2,400s can be read from the diagram
by the length of the horizontal line at height N = N,(2,400) = 600s intersecting
the curves Nj (1) and Na(¢): T12(t = 2,400) =~ 1,300s (exactly: 1260, see below).
The expected travel time 7j,(¢) at time # = 2,400s is equal to the length of the
horizontal line at height N; (2,400) = 1,250 intersecting the two N-curves: T15(¢) ~
600s (exactly: 660).

Subproblem 4. The diagram of the N-curves shows that, when estimating 7),()
within the time interval —120s <t < 2,520s, the horizontal line intersecting the N-
curves has a height N between N;(—120) = 0 and N;(2520) = 1320. We determine
its length between the intersections with the N-curves using the results of subprob-
lem 2:

N (l‘) = Nz(l‘—i—‘flz)

60+% — (1+%2)—1,800 = Fp—1,860— %

For t+ < —120s, we have Tj, = 120s, i.e., equal to the free-flow travel time. At

t = —120s, there is a jump from 120 to 1,920, i.e., by 1,800 s or 30 min. This corre-

sponds to the waiting time difference between the last vehicle that can pass before

the road closure becomes active (possibly the car causing the accident), and the car
after it having to wait the full duration of the road block.

For 71, (¢) within the time interval 1,800s < < 3,120s, we obtain analogously

Ni (l‘— le) = Nz(t)

1
60+§(t—112)=t—1,800 = T2=3,720s—t.
Subproblem 5. Since, according to the problem statement, the floating car slows
down sharply when passing D2 at 16:00 h, the accident happened downstream of
D2 somewhat before 16:00h. This corresponds to situation (2) discussed in sub-
problem 1 above.

22.3] Costs of Motorway Congestion Estimated from Floating-Car Data

1. The total vehicle travel time (22.3) inside jams can be expressed by T =
Y Y, msAt as sum over all updates Az and all congested road segments s with
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nys vehicles in each at time ¢. The delay time is calculated by subtracting the
travel times for free traffic,

- Vi
f ts
Tdelay = Ttot — Tfree = ZZ (nts _nt§ee> At = ZZ”’S (l — VO> At
t st rost

ts

where the last expression follows from vehicle conservation assuming steady
states and a known free-flow speed V). The number of vehicles n, in each
congested road segment of length L; with the number of lanes I; known from
a digital map is given by n = p"'L; = [[pLy; = I;pcong (Vis)Ls. To estimate the
congested density per lane, we assume a triangular fundamental diagram whose
congested speed-density relation is given by Eq. (9.33)),

Vpon) = L) Qo ()

pcong Pcong VO

with measurable parameters for the free-flow speed Vj, the maximum flow per
lane QOmax (approximately 2,000 veh/h/lane on highways), and the wave speed
w =~ —15km/h. With the known speed V;; and the inverse relation

_w
Peong(V) = ) (1 "0)
£ V—w ’
the number of vehicles in a congested road segment at time ¢ can be estimated
as

Nis = IsLspcong (Vts) )

and the total and additional travel times by summing over all times and con-
gested segments

The socioeconomic costs of congestion include loss of time, changed fuel con-
sumptions/emissions, additional accidents, delay costs (e.g., missed appoint-
ments or broken just-in-time supply chains), and other external costs. Focussing
on direct costs (time loss and increased fuel costs) we will show in Chap-
ter 23] that increased fuel consumption is negligible (there may even be a de-
creased fuel consumption). Estimating the costs of loss of time from the de-
layed vehicle-hours, we need to assume an average value of time (VoT), 10€/h
for instance, and an average occupancy of 1.2 persons/veh for example. Then,
the monetary costs are just the delayed vehicle-hours multiplied with the VoT
and the occupancy according to following table.

17 Note that, unlike the congested density, the free-flow density can not be estimated from local
speeds if the penetration level is unknown. Conversely, the penetration level could be estimated
from the absolute number of vehicles in congested segments (cf. Sect. F.7.1)).
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Country ~ Motorways  Tgelay Direct Costs ~ Motorway Specific
(km) (mill. h/year) (mill. €/year) Costs (€/km/year)
NLD 5,500 62.0 744 135,000
GBR 7,500 61.0 732 97,600
DEU 27,400 195 2340 85,400
Problems of Chapter 23

23.1] Coefficients of a Statistical Modal Consumption Model
Assuming a constant specific consumption Cypec = 1/(ywca1) (purely analytic physics-

based model) and inserting Eqs. 23.13), 23.7), and (23.3) into Eq. (23.13) gives
following function for the instantaneous model consumption:

C = CypecP = Cypecmax [0, Py + Fv]

1
= Cypec max 0,Py+mw+m(UL+¢)gv+ EcdpAv3 .

Apart from the maximum condition, this is a parameter-linear function whose pa-
rameters f3; can be easily estimated by conventional multivariate regression. Com-
paring this function with the statistical model specified in the problem statement and
using Table gives following relations and values for the model parameters:

Bo = CspecPo =242-10"Cliters /s

Bi = Cspecrngit = 11.9-10"liters/m

B2 =0

B3 = ACpeccapA = 31.4-10 7 literss? /m®
Ba = Cspecin = 121-10"®liters s> /m>
Bs = Cipecng = 1.19-10 2 liters/s.

The following figure gives a plot of this function:

dC/dt [liters/h] dCrdt

N
ONPRO0O

ORI

\ 5 60
15 20 v [km/h]
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23.2] Coefficients of the VT-micro Model
The VT-micro model (23.3)) reads

N_ P _ ):i,jLijVi?j. v>0
¢ € P {Zi7jM[jVIVJ v<O0

and the physics-based model (23.15)) with constant efficiency factor or specific con-

sumption Cgpec

. 1
C = Cypec (PO + Umgv + mgynvv + 2CdpAV3>

with the physical parameters explained in Table 23.21 In order to find the terms of
the VT-micro model for v > 0 corresponding to the physics-based model, we write
the VT-micro model as

C = eMexp <ZL,~ vl — Loo)
i,j

which, for the limit v — 0 and v — 0, allows to immediately identify eloo = CspecPo,
SO
LOQ = ln(CspeCP()) = —8.33.

To identify the remaining parameters Lo, L1, and Lzg, we could identify
CvTmicro = CspecPoexp (l1ov+ Loov? + Lagv® + Lygvi + .. )

with

Cphys = Cspech (“}’;Zg v+ C;]Pi? V3 + mlcig/n VV)
and perform a Taylor expansion around v = 0 and v = 0. However, because of the
nonlinear exponential function, such an expansion will only be valid for very low
speeds and accelerations. In fact, the VI-micro model only produces valid results
for a complete set of factors and quickly will result in unphysical values outside its
calibrated range.

23.3] An Acceleration Model for Trucks

To solve this problem, we only need the power module of the physics-based modal
consumption/emissions model. Assuming a constant engine power P and solving
Eq. @23.7) for the acceleration gives

ip(v,9) = 0

1
- g(nu' —+ (P) - Ecdpsz'

To include the restraints “maximum acceleration amax”” and “no positive acceleration
at speed v > vy”, we obtain the final form of the free-flow truck acceleration model:
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v(v,¢) = {min (amax,vP(v,0))  v<wp

min (0,vp(v,9)) V> .

Following plot shows that the engine power is just sufficient to drive the truck at
80km/h along a 2% uphill gradient with maximum power.

1 Road g‘radient 0% ‘
\ Road gradient 2%
— 08
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S 04
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Speed [km/h]

Characteristic Map of Engine Speed and Power

“Full throttle” corresponds to the top part of the allowed operating region for a given
engine speed, i.e., to the top contour line of Fig. 23.3(c) or (d). At 3,000 rpm, it cor-
responds to 70kW. For a power demand of 60 kW, an engine speed f = 3,300rpm
(or the speed nearest to this value allowed by the transmission) results in most effi-
cient fuel usage (determine this again using Fig. 23.3[c) or (d)).

Characteristic Map of Engine Speed and Mean Effective Pressure

(i) 60kW; (ii) An engine speed of 2,600min~! results in a specific consump-
tion of about 300 ml per kWh while, at 4,000min~!, the specific consumption is
~ 350ml/kWh. The first option is more efficient although the throttle pedal needs
to be pressed down further than for the higher engine speed because, for 2,600 rpm,
the distance to the full-throttle maximum is lower than for 4,000 rpm).

23.6] Does Jam Avoidance Save Fuel?

At high vehicle speeds, the aerodynamic drag becomes dominant and the consump-
tion per kilometer increases nearly quadratically. Therefore, the savings potential
decreases and can even become negative (when comparing homogeneously flowing
congested traffic with high-speed free traffic).

Influencing Factors of Fuel Consumption

Combining Egs. 23.19), 23.13), @23.7)), and (23.3) for the purely analytical physics-
based model (constant specific consumption), we obtain following relation for the
consumption per travel distance:

C,= d£ = Cypec Max [O, (f:) +mv+ (U +¢)mg+ ;cdpAv2>} . (13)

dx
1. Air condition. Correct. The additional power AP, results in an additional con-
sumption ACy = Cypec ARy /v which increases for decreasing speed. (Numerical val-
ues for APy = 4kW: 2.91/100 km at 40 km/h and 1.451/100 km at 80 km/h.)
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2. Roof rack: False. It is true that the increased ¢, value increases the consumption
per distance by ACy = CgpecAcy pAV? /2. However, this increase grows quadratically
with the vehicle speed, i.e., it is lowest for city traffic. (Numerical values for Ac; =
0.08: 0.411/100 km at 80 km/h and 1.651/100 km at 160 km/h.)

3. Disconnecting the clutch when driving downhill. False. If the clutch is discon-
nected, the driving shaft is decoupled from the generator and the overrun fuel cut-
off cannot operate. In this case, the instantaneous consumption rate is given by the
idling consumption rate Co= Cspec P leading to Cyg = CopecFo /v for the consump-
tion per distance. With the clutch connected, the fuel consumption C, is less than Cyq
if F < 0, and the overrun fuel cut-off is fully operative, i.e., Cy =0, if F < —Py/v.
(Numerical values at 50km/h: Cyy = 1.741/100km; downhill gradient where the
driving resistance F is equal to zero: —1.51%; downhill gradient where the overrun
fuel cut-off is fully operative: —2.98%.)

4. Only use half the capacity of the tank. False. At a tank capacity of 60 liters,
the average fuel volume is 30 liters for the cycle full-empty—full etc., and 15 liters
for the cycle half-filled—empty-half-filled etc. This corresponds, on average, to
a savings of the total mass by Am < 15kg (since the specific mass of fuels is
less than 1kg/liter). The resulting effect on the consumption per distance, AC, =
—CypecAmgp < 0.0119 1/100km, is independent of the speed v and negligible (but
the risk to run out of fuel increases).

5. Reduce speed from 50 km/h to 30 km/h. False. At speeds below the optimal value
of about 50 — 60km /h (cf. the figure), the consumption (I3) per distance increases
with decreasing speed. Specifically, Cy = 4.31/100km at 30 km/h and 3.51/100 km
at 50 km/h.

20
18

T T T T
plane road section, constant driving

\\ 5% uphill grade, constant driving
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< 1\
S Ll
2 12 ]
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2
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6. Reduce speed from 150 km/h to 130 km/h. Correct. C, =7.21/100km at 150 km/h
and 6.01/100 km at 130 km/h (cf. the figure).

Start-Stop System

The total waiting time is 360 s which, at 0.87 I/h for idling the engine means 87 ml
saved fuel. In relation to the covered distance of 5km, this is a fuel saving of
1.741/100 km.
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Highway vs. Mountain Pass: Which Route Needs More Fuel?
When choosing alternative 1, i.e., driving the level highway at 150 km/h, one needs
7.2 liter per 100 km (cf. Solution to Problem 23.7)).

When choosing alternative 2, i.e., driving the mountain pass at 70 km/h, one
needs fuel only for the 50% of the route going uphill while the downhill gradient
of 8% is more than enough to fully activate the overrun fuel cut-off (cf. the figure
at the solution to Problem 23.7). With Eq. (I3)), we obtain for the uphill sections
(¢ =0.08) a consumption Cy = 13.11/100km. For the complete mountain pass (up-
hill and downhill), the consumption halves to Cy = 6.51/100km which is less than
the consumption on the highway! (The balance tips over to the other side for gradi-
ents of more than 10% or when driving more slowly on the highway.)

Four-Way-Stops vs. Intersection with Priority Rules

The analysis of situation II (constant speed vo = 16m/s) is easy: With Eq. (13)), we

obtain for the 500 m long stretch between two intersections Cyj = LC, = 24.2ml.
For situation I, we separate the driving cycle between two intersections into three

driving modes: (i) accelerating from zero to vy, (ii) cruising at vg, and (iii) deceler-

ating to a full stop at the next intersection.

(i) Acceleration phase. Withv=a=2m/ s2, this phase lasts a time interval of £, =
8s during which a distance of L, = v(z) /2a = 64m is covered. Because both Cy and
C are variable during the acceleration phase, explicit integration is necessary. We
choose integration over time. With Eq. and Cypec = 1/(yWear), the integrand
C reads

Clt)= i—f = Cypec (Po +mov(t) + (1 + @)mgv(t) + %cdpAv3 (t)) . (14)

With v(¢) = ar, the integration can be evaluated analytically:

tq
Coce = /C(t)dt
0

la

1
= Cypec / (P() +mad’t + umgat 4 2cdpAa3t3) dr
0

1 1
= Cspec (PO ta+ Ema(a + [,Lg)tg + ScdpAa3t3> .
Using t, = vo/aand L, = %atﬁ, we simplify this expression to
1 2 1 2
Cace = CspecWace = Cspec | Pota + Emvo +mugL, + chpAvoLa =17.8ml.

The terms in the parenthesis of the last equation have the following meanings: Pyt, is
the energy necessary to operate all the secondary appliances during the acceleration
phase, %mv% is the kinetic energy at the end of this phase, m gL, is the energy lost
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(or, more precisely, transformed to heat) by the solid-state friction, and %cdpAv(z)La
is the energy lost by the aerodynamic drag.

(ii) Cruising phase. Since both the acceleration and deceleration phases cover a
road section of L, = 64 m, a distance L, = L — 2L, = 372 m remains for the cruising
phase. Correspondingly, Ceryise = Cspec Weruise = LeCx(vo,v =10) = 11.1ml.

(iii) Deceleration phase. Due to overrun fuel cut-off, no fuel is consumed in this
phase, s0 Cprake = o[

Result for situation 1. The total consumption between two intersections for the traf-
fic rules of situation I equals C; = Cyce + Ceruise + Corake = 31.4ml which has to be
compared with Cjy = 17.5ml.

In summary, the fuel saving potential of changing the traffic rules from that of
situation I to that of situation II is more than 40% which is massive.

23.11| Fuel Consumption for an OVM-Generated Speed Profile

Subproblem 1. The OVM free acceleration v = (vo —v)/7 is maximal at v = 0.
Prescribing Vg, = v0/7 = 2m/s? gives the relaxation time 7 = vo/a = 16.67s[9

Subproblem 2. We calculate the instantaneous power at a given speed v from

Eq. 23.7) with Eq. (23.3):
C(v,v)

spec

P(v,v) =

1
=P+mw+ (U+o)mgv+ EcdpAv3.

Inserting the OVM free acceleration v = (v — v)/7, we obtain Poym(v) = Ag +
Av+ Axv? + A3 where

Ao — Py = 3kW, Alzm(g;w%(’) —3,147Ws/m,
1
Ay =—"=_90W(s/m)>, A3= SCapA = 0.39W(s/m)>.
Subproblem 3. As usual, we calculate extremal values by setting the derivative with

respect to the interesting variable (here, the speed v) equal to zero:

dP,
“9 Ay 42450+ 3431% £ 0.
dv
This quadratic equation has two solutions and corresponding extremal power re-

quirements Poyu:

18 Strictly speaking, this is not true for the very last part of the deceleration phase when the speed
(ignoring aerodynamic drag) drops below v, = Py/[m(|v| — g)] = 7km/h. This is neglected here.
19 At this value, the OVM is extremely unstable and cannot be used for simulating interacting or
congested traffic.
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vi = 133.7m/s = 481.4km/h, Poym(v]) = —254kW,
vy =20.1m/s =72.4km/h, Poym(v;) =33.1kW.
Obviously, the second solution is the correct one since the power (and the OVM

acceleration) is negative for the first one The maximum power during the accel-
eration phase is reached at 76 km/h. Its value is 32.1 kW.
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23.12] Trucks at Uphill Gradients

1. Engine power. With Egs. (23.7) and (23.3)), we obtain for the necessary power to
maintain a speed v = vjjmi = 80km/h at level roads

1
Payn =P — Py =VF(v) = umgv+ Ec,,,pAv3 = 249kW +57kW = 306kW.

2. Initial deceleration. The two new forces entering the balance are the uphill-slope
force and the inertial force. Since, initially, all other forces remain unchanged, the
two new forces must cancel each other, i.e.,

- . [ —0.49m/s*  at 5% gradient,
0stv=0=v="—¢g= { —0.39m/s>  at 4% gradient.

3. Terminal speed. Equation (23.7) also delivers the terminal speed at a gradient ¢
by setting v = 0 and solving for v. Neglecting the aerodynamic drag, we obtain

Payn 10.2m/s  at 5% gradient,

Fayn = (i +9)gmv = ve. = (U+0)gm - { 11.7m/s  at 4% gradient.

4. Estimating the OVM parameters in the uphill section. Since the OVM speed ap-
proaches asymptotically the desired speed v.., we can set the OVM “desired speed”
in the uphill sections equal to the terminal speed v... The initial accelerations calcu-
lated in subproblem 2 at the desired speed v of the level section serve to estimate T
via v = (veo — V) /T, i.€., T = (Voo — V) /V, resulting in

r— 24.4s  at 5% gradient,
"] 26.8s  at4% gradient.

20 This solution represents the minimum power requirement.
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5. Speed and distance over time. The solution to the inhomogeneous ordinary dif-
ferential equation % = (Ve —v)/7 for the initial condition v(0) = vy reads (cf. the
following figure)

V(1) = Ve + (Vo — vw)e”/f,
xX(1) = veo(t — T) +v07 — (Vo — veo) T /7.

80 2000
5% uphill grade OVM, 5% uphill grade
70 4% uphill grade OVM, 4% uphill grade
— Asymptotes 1500 - 500m ——
€ \ = 1000 m ="
g ®0 g 1000 /
° =
g 50 AN g s
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For the uphill section 1 of length L; = 500m and gradient ¢; = 5%, we obtain
for the time # = #; = 29.1s given in the problem statement:

v(t1) = 13.8m/s = 49.8km/h.

(Test: x(71) = 500.5m.) Analogously, we obtain for the uphill section 2 of length
L, = 1,000m and gradient ¢» = 4% at time t =t, = 64.2s:

v(t2) = 12.6m/s = 45.2km/h.

(Test: x(r2) = 1,000.2m)

Discussion. Although the uphill section 1 is steeper, the speed of the trucks at its
end is higher than at the end of the less steep but longer uphill section 2. Therefore,
it makes sense to allow higher gradients on shorter uphill sections.

Maximum Deceleration Capability of Regenerative Braking

The maximum regenerative deceleration is proportional to the maximum torque
in the generator regime which is constant below a critical engine speed f. and
corresponding vehicle speed v, and proportional to 1/v for higher speeds. Using
Eq (23.17) at the transition point, Pnax = 27 fMmax, we find

_2nfe
IBEV

— Pmax
27T M max

fe =477s7, v,

=23.5m/s.
At 50 km/h (13.9 m/s), we are at the torque limited regime and the maximum regen-
erative deceleration is given by

F IBEVM,
preg (V < Vc) _r_ max
m T'tire

max

=3.67Tm/s>.
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For v=100km/h =27.8m/s, we are in the power limited regime, so, with P = mvv,
we have

P
brg (v>v)= P 3.09m/s?.

Notice that we also could have calculated this deceleration by bygx (v > v.) =

bmax(v < v¢)ve/v. In summary, regenerative braking (recuperation) is possible

for most everyday braking situations but not for emergency braking maneuvers
(= 10m/ s?) or stronger decelerations at high speeds.

23.14| Driving Patterns of Battery-Electric Vehicles
1. Basic elements of the driving patterns.

* Cruising at constant speed vy over a distance L. Clearly, Py 4+ vF > 0 for a level
terrain. Since state variables are independent of x in this driving element, we
use Eq. (23.30) with (23.3). With the travel time T = L/vy and the abbreviation
¢ =1/2c4pA (c =0.897kg/m in our example), we have

A 1
POT—i—mg‘uL—l—%cv%L (%"’mg“"'ic‘%)l'
We(vo,L) = T’2 = 5
batt TTmot Npatt Tmot

corresponding to an energy demand per distance of Wyjug /L.

* Accelerating from zero to the speed vy. For the Py term, we need the time
T, = vo/a. For the constant rolling friction term, we use Eq. resulting
in [F(x)dx = mguL, with the acceleration distance L, = v3/(2a) = v(T,/2 (cor-
responding to the braking distance at —a). For the inertial part, we use Eq.
with

T m Ta d m - m
. dyn 2 dyn  27v=Vo dyn 2
Maypvvdt = > )y d—t(v )dr = > [ ]v:O =3 vg-

Finally, for the wind-drag part, we use the time integral of Eq. (23.29) as well:

Ta c c VO/“
[ _¢ 3,3
/0 v(zv(t)>dt 2/0 a’t’de
3

ca =vo/
ca’ eyl

4 3 2
CcV CcV CV,

0 OT Ol
o - o = — La,

8a 8 “ 4
where L, = vyT,/2 has been used at the last equality sign. Putting all together,
we have

(% +mgu + %cv%) Lo+ §maynv3 2
Wa(vo,a) = 5 . L=
Mbatt Tmot 2a
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* Decelerating from speed v to zero. Assuming that one is always in the regener-
ative braking regime, the derivation is along the lines of the acceleration regime
resulting in the above expression with a reversed sign for the dynamic contribu-
tion and the 7 value for recuperation,

2P, 1 1 V2
Wo (vo,b) = KVQ +mgu + 46\%) Ly — mdyn"%} Nmot, Ly = Z

2 2b°

The approximation of always being in the regenerative braking regime is valid as
long as v > v, given by Py +mguv. — mgynveb = 0 resulting in

P

Vo= —"7T""7
‘ Maynb —mg

evaluating to v, = 0.25m/s, in our case. Therefore, this approximation only en-
tails minimal errors.
*  Waiting a time Ty,p. This is just given by

PT
Wo(T) = — .
Mpat Tmot

2. Driving patterns “residential area” and “arterial”.

* Pattern 1: Residential area. We have a total length of L = 1,000m, a maximum
speed vo = 30/3.6m/s, and n = 5 acceleration and deceleration phases at a =
b =2m/s*. Hence

W;f;;demial = 5Wi (vo, b) + 5Wa(vo,a) + We(vo,L —5(Ly+ L))
= 655000 Ws = 0.182kWh

where L, = L) = v%/a = 17.4m has been used.
* Pattern 2: City arterial. In analogy to above, we have

Winerl = W (vo,b) + Wa(Ty) + Wa(vo,a) + We(vo,L — (La + Ly))
= 618000 Ws = 0.172kWh

where v = 50/3.6m/s, L, = L, = v} /a = 48.2m, and T,, = 30s has been used.

[23.15] Under Which Conditions Do All-Electric Cars Save CO, Emissions?
For the BEV, the indirect CO, emissions per km can be calculated from the defini-
tion of the carbon intensity Cgloz = 0.35kg CO, /kWh of the used mix of electricity
generation and the fact that the values for W,y already calculated in the previous
problem 23.14] and in the main text Section 23.4.4] directly give the electricity de-
mand including charging losses,

BEV __ el
eco, = Cco, Wplug-
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For the ICE, the CO; emissions are calculated using the definition of the specific
consumption Cepec = 0.291/kWh (transforming the needed energy for driving and
appliances into used fuel) and the well-to-wheel carbon intensity (sum of well-to-
tank and tank-to-wheel emissions) ng)‘z" = 2.79kgCO;/1 transforming used fuel
into CO;:
eICCoEz = g(z)?cspecW/ICE-

Since all engine losses are already characterized in the specific consumption and
“charging” the ICE (i.e., filling it up) is lossless, the expressions for the ICE energy
demand in the five patterns are that for BEVs with 7pa and 7y set to unity. Fur-
thermore, because ICEs cannot recuperate, all negative energy/power contributions
are set to zero (overrun fuel cut-off). The results are given in Table 23.4]in the main
text.

Problems of Chapter 24

24.1] Discrete-Choice Models for the Routing Decision

1. General binary discrete-choice model. Since a homo oeconomicus will always
choose the alternative with the highest total utility U;, the probability of choosing
alternative i = 1 out of two alternatives is just given by P; = prob(U; > U,). Insert-
ing the decomposition U; = V; + €;, separating the deterministic and random terms
and using the definition of the cumulative distribution function F(x) = prob(X < x)
of a random variable X, we obtain

P = prOb(Vz +& <V +81)
= pI‘Ob(82 —&g <V—- V2)
= ng_gl (V] - V2).

2. Binary Logit model. With Fg,_¢ (x) = Fg, _¢,(x) = 1/(14+e7"), we obtain

1 et

P = - .
1+e27V 146

3. Meaning of the model parameters. If the travel time of alternative i increases by
AT;, the utility increases by BrAT;, so, obviously, Br < 0. Since & is dimension-
less with a variance near unity this means that an increment AV; = BrAT; =1
essentially corresponds to a change by one standard deviation of the random utility.
Hence, 1/fr essentially corresponds to the standard deviation of the random utility
if measured in minutes. The parameter 3; gives an ad-hoc “bonus” for alternative 1
for the case of equal travel times in multiples of the standard deviation of the ran-

21 The precise value depends on the model but it is always near 1. For the Logit model, we have
Var(g;) = w2 /6.
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dom utility. We expect B; > 0 since, generally, driving an unknown deviation is
more stressful than just following the main route.

4. Application to the route-choice decision. Only the fraction ¢ of drivers is “in the
know” and willing to potentially use the deviation is eligible for the discrete choice.
Hence, the probability P, of drivers actually using the deviation is the product of the
probability for being eligible and the conditional probability of choosing route 2 if
eligible, hence

. Va (1)
_ ogit _ ae _
Py = P = T e A0 =1-P0),

which is Eq. 24.2) of the main text.
24.2] User Equilibrium and System Optimum in Dynamic Navigation

1. Travel times. In an empty network, the maximum speed Vy (which here is the
same on both routes) can be driven, so

L Ly
Tor = — =750 Ty, = — = 800s.
01 Vo S, 02 Vo S

2. User equilibrium I: Qualitative considerations. Once an inflow Qj, = 5,400veh/h
arrives, all drivers will first choose R1 since T19 < T»9. However, since Qj, > C]13,
a traffic jam will form behind the bottleneck. New incoming drivers with a perfect
knowledge of the instantaneous travel times on both routes will still select R1 until
the travel time 7; has increased near T>p. Then, some drivers will select R2 such that
the length of the jam on R1 remains constant at 71 ~ T>9. However, this will only
happen in the presence of noise, or > 0. Otherwise, we have a bang-bang control
which, in the presence of delays, will always lead to oscillations. Since there is no
hysteresis or capacity drop in LWR models, the flow on R1 in the user equilibrium
(UE) and the corresponding flow on R2 are given by

0P = CB =4,860veh/h, OF"UF = 0y, — Q"VF = 540 veh/h.
The resulting flow Qtzm’UE is well below the bottleneck capacity C¥, so no jam will
form on R2.

Length of the congestion on Rl in user equilibrium. The length x of the congestion
on R1 in user equilibrium is given by the condition of equal travel times on both
routes:

X Li—x
I = Voors + Vi = T,
or ; L
e 20 — Vo
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In order to obtain the speed Viong in the congestion, we observe that the congested
flow per lane on the three-lane road is given by QOcong = C? /3. Since the wave speed
w is the slope of the congested branch of the triangular fundamental diagram, and
Ocong = 0 for p = piax, the associated density is determined by Qcong = W(P — Pmax)
or

Qcong C{g
Pcong = Pmax + =Pmax + 5 = 60V6h/km,
w 3w
whence
Qcong

Veong = =7.5m/s, x=600m.

cong

3. System optimum (SO). Since Tg < T»9, the system optimum implies that as many

vehicles as possible take R1 without producing a jam. This means Qtlm’so = C{g as

in the user equilibrium. However, vehicles are sent on R2 before a jam can form, so
that 7, > T; which means, the SO is no equilibrium configuration, whether stable or
unstable. In summary, we have

050 = OP"UF = 4,860veh/h, 0350 = OF"UF = 540veh/h,
and

Ty =Ty o =750s, T, =T =800s,
tot,SO tot,SO
o 0
Qin Qin
4.1 Necessary conditions for a UE as calculated previously, both the UE and SO
require that a percentage

T = T = 0.97; +0.1T> = 755s.

A B
pso = Cn=CL _ y0q,
Qin
diverts to the deviation. If the uncertainty o7 is sufficiently small, or < Ty — Toy,
all equipped drivers will divert as soon as the jam on Route 1 reaches its UE length
but not earlier thus stabilizing the UE. Obviously, this is only possible if there are
enough equipped vehicles, o > sto. If, however, « is significantly greater than
sto’ oscillation instabilities will form. If o7 is no longer < Ty, — Tp1, oscillations
are suppressed but some drivers will already use Route 2 before the UE length of
the jam is reached leading to a situation between the UE and SO.

4.2 Necessary conditions for a SO. In order that a SO is sustained, a fraction P5© of
drivers must use Route 2 right at the beginning, i.e., use a route which is longer by
the time difference Ty, — Tp;. In order to do this, the uncertainty must be at a certain

level given by
a a
= oV = Ty Ty
e +1 o

P,

which can be solved for o resulting in Eq. 24.21) of the main text,
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Too—To1
o= PZSO <e o + 1) .

Additionally, we must require P, < 50% because, otherwise, Condition (24.21)) can
never be met.

Necessary conditions for no jam on Route 2. Congestions on both routes are
avoided in the steady state if PO < P, < PI"™ where Py is calculated from the
maximum flow QP = C¥ that Route 2 can accommodate without becoming
congested, so

B
G

=20%.
Qin ’

max __
P2 —_

In terms of «, this means

max Too—To1
o S P2 e °r + 1

which is the second condition of 24.21).
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