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Chapter 16

Stability Analysis

Mathematics is the key and door to the sciences. Galileo Galilei

Abstract Second-order macroscopic models and most car-following models are

able to reproduce traffic waves or other observed instabilities of traffic flow. Af-

ter an intuitive introduction, we define the relevant stability concepts such as lo-

cal instability, convective and absolute string and flow instability, or Ljapunov and

asymptotic stability. We give general analytic criteria for the occurrence of these

instabilities for microscopic and macroscopic models. For microscopic models, we

compare the approaches via Fourier analysis and transfer functions. The formula-

tion is more comprehensive than the various accounts in the specialized literature

and can be evaluated for any traffic flow model with a well-defined acceleration

function, and also for models with explicit time delays or considering several vehi-

cles ahead (multi-anticipation) or one in the back. The stability criteria allow us to

characterize the influencing factors of traffic flow instabilities and answer the ques-

tion of if, and in which way, the driving behavior (or advanced driver-assistance

systems) influence traffic flow stability.

16.1 Formation of Stop-and-Go Waves

Instabilities of traffic flow resulting in traffic waves, also termed stop-and-go waves,

are caused by the delays in adapting the speed to the actual traffic conditions. These

delays are the consequence of finite acceleration and braking capabilities, and also

result from finite reaction times of the drivers. If traffic density is sufficiently high,

this delay leads to a positive feedback on density and speed perturbations.1 We

will now intuitively explain this vicious circle with the help of Fig. 16.1 (see also

Fig. 16.8):

1 Generally, delays in a feedback control system favor instabilities. This can be experienced intu-

itively when taking a shower and controlling the water temperature, particularly, if the response

time between the controlling action and the result (a change of the water temperature) is rather

long.

347



348 16 Stability Analysis

t=t3t=t2t=t1t=t0 t=t4

Jam−

wave

Time

s
tr

o
n

g
e
r 

d
e
c
e
le

ra
ti

o
n

1

1

1

1

2

2

2

2

2

3

3
3

3

4

4 4

5

s
li
g

h
t 

b
ra

k
in

g
 m

a
n

e
u

v
e
r

D
ri

v
in

g
 D

ir
e

c
ti

o
n

n
e
a
rl

y
 s

to
p

p
e
d

te
m

p
o

ra
ri

ly
 s

to
p

p
e
d

s
ta

n
d

s
ti

ll

Fig. 16.1 The vicious circle: In order to regain the safety gap, the driver of every following vehicle

needs to brake harder than his or her predecessor. The numbers beside the vehicles denote the

vehicle index.

• The scenario starts with a platoon of cars initially in steady-state equilibrium at

speed ve. At time t = t0, the driver of car 1 brakes slightly (for whatever reason)

and continues driving at a slightly lower speed v1 < ve.

• As a result, the new optimal speed for car 2 is given by v1 as well. So the driver

of this car reduces his or her speed from ve to v1 in a finite time interval ending

at time t1.

• If traffic is sufficiently dense, or if the speed adaptation time is sufficiently long,

the gap of car 2 at time t1 is smaller than the steady-state gap se(v1) at the speed

of the leading car 1. In order to regain his or her desired gap, the driver of car 2

has to brake more, i.e., he or she decelerates temporarily to a speed v2 < v1 in

the time interval between t1 and t2. The degree of this overreaction increases

with the sensitivity to changes of the gap which is given by |v′e(s)| and V ′
e(ρ) for

microscopic and macroscopic models, respectively.

• Since the driver of the next car 3 also needs some time to adapt the speed, the

gap between car 2 and car 3 may become smaller than the steady-state gap se(v2).
Therefore, the driver of car 3 decelerates further to a minimum speed v3 < v2 at

time t2.

• This positive feedback continues when going to the next car 4 which has to stop

completely (time t3).

• The resulting traffic wave dissolves only if the number of new vehicles approach-

ing the wave from behind decreases.

As a result, a stop-and-go wave emerges “out of thin air” giving rise to the name

phantom jam for this phenomenon (see also Section 21.2 and the right diagram of

Fig. 16.11). At sufficiently low traffic density, or when traffic consists predomi-

nantly of agile drivers, the vicious circle is broken. In this case, the drivers have
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already equilibrated their speed to the new situation at the time where a new vehi-

cle comes within interaction distance, so the stop-and-go mechanism is not effec-

tive. As a result, all drivers following car 1 decelerate to v1 but not further (see the

left diagram of Fig. 16.11 for an example). From the qualitative consideration, it

follows that the stop-and-go mechanism is never effective in models describing in-

stantaneous speed adaptations and zero reaction times as in first-order macroscopic

models (LWR models), or in Newell’s microscopic model. As a result, density per-

turbations never grow in such models, so they cannot describe traffic instabilities.2

In summary, the qualitative argumentation suggests that the tendency to traffic

flow instabilities increases with

• increasing speed adaptation time,

• increasing traffic density,

• and increasing sensitivity |v′e(s)| or V ′
e(ρ) for changes of the gap.

The stability analysis expounded below agrees with this reasoning.3

16.2 Mathematical Classification of Traffic Flow Instabilities

We emphasize that all types of instabilities discussed in this chapter describe a ten-

dency to oscillations, traffic waves, stop-and-go traffic and the like. However, they

do not correspond to accidents (which would be characterized by negative gaps or

densities exceeding the maximum density ρmax in the microscopic and macroscopic

descriptions, respectively). Generally, simulated accidents only occur if the insta-

bility thresholds are exceeded extremely. However, in some models representing

“short-sighted” drivers (such as the OVM), accidents may happen even for parame-

ters corresponding to perfectly stable traffic.

Moreover, the physical instabilities of real traffic discussed below have to be

distinguished from numerical instabilities. The latter result from integration steps

being too large, or by applying an unsuitable numerical update method (see Sec-

tions 10.5 and 11.3 for details). In contrast, real traffic instabilities are the conse-

quence of physical delays due to finite accelerations and reaction times.4

2 The only way to generate a traffic breakdown in such models is by simulating a bottleneck

and assuming upstream boundary conditions corresponding to an inflow exceeding the bottleneck

capacity. Then, as soon as the flow at the bottleneck exceeds its capacity, the density immediately

upstream of the bottleneck jumps to the congested branch of the fundamental diagram at a flow

corresponding to the bottleneck capacity (cf. Section 9.6).
3 Notice that, in some models, the speed adaptation time may depend on traffic density getting

shorter for increased density. This can more than compensate for the destabilizing effects of traf-

fic density itself, so congested traffic may be unstable for most densities but restabilize for high

densities near the maximum.
4 In particular, both physical and numerical instabilities include so-called convective instabilities

which are discussed in the Sections 10.5 and 16.6, respectively. Convective physical and numerical

instabilities have no commonalities, whatsoever.
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Fig. 16.2 Schematic sketch of the different instability concepts in terms of speed time series of

single vehicles: If traffic flow is convectively string unstable, perturbations grow but propagate

only upstream. Consequently, all vehicles drive smoothly at the time they pass the location of the

initial perturbation (indicated by the thin black line). If traffic flow is absolutely string unstable, the

perturbation eventually spreads everywhere but any given vehicle eventually drives smoothly, i.e., it

can follow a vehicle with predetermined trajectory without sustained oscillations (platoon stability)

In the presence of local instabilities or platoon instabilities, even following a single vehicle leads

to sustained oscillations.

In the following, we distinguish categories of traffic instabilities depending on

criteria for their existence and the type of resulting congestion pattern.

Evolution in time or over vehicles: local versus string instability. Local insta-

bility relates to the car-following dynamics of a single or a few vehicles following

a leader with a predetermined trajectory (typically introducing a perturbation by a

temporary speed drop or fluctuation while driving at constant speed for the rest of

the time).

To define local stability, we require that the leader j = 05 only introduces per-

turbations for times t < t0 < ∞, i.e., the deviation u0(t) from the final steady state

5 To avoid confusions with the imaginary unit i needed later on, we will denote the vehicle index

as j throughout this chapter.
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satisfies u0(t) = 0 for t > t0 while generally u j(t) 6= 0 for all followers j > 0.6 Then,

this system is (asymptotically) locally stable, if the gap and speed fluctuations of any

given follower eventually decay to zero for t → ∞. Otherwise, it is locally unstable

(cf. Fig. 16.2).7

In mathematical terms, a platoon of n followers is (asymptotically) locally stable

if the deviations u j(t) of any follower j = 1, . . . ,n satisfy

lim
t→∞

u j(t) = 0 if u0(t) = 0 for all t > t0. (16.1)

Since this definition refers to a (finite) platoon of followers, one also speaks of pla-

toon (in)stability. Notice that this definition does not exclude cases where fluctua-

tions may temporarily increase from follower to follower as illustrated by the second

set of trajectories of Fig. 16.2 (convectively string unstable but locally stable): The

maximum perturbation amplitude increases from follower 1 to 2 to 3 but eventually,

all perturbations decay to zero. The trajectories of Fig. 16.4 show another example

of this situation. Later on, we will mathematically describe such an increase by the

absolute value of the transfer function (16.71).

Obviously, this stability concept is only applicable for microscopic models. For

practical purposes, it is relevant when developing the feedback controllers of ACC

systems.8

In contrast, the ubiquitous traffic waves are the result of string instability. In

defining string instability, we consider how an infinitely long vehicle platoon on an

infinite homogeneous road responds to a local and temporary perturbation. Traffic

flow is (asymptotically) string stable if such a perturbation eventually decays every-

where:

lim
t→∞

max
j
(u j(t)) = 0. (16.2)

Otherwise, it is string unstable.

We emphasize that the definitions (16.1) and (16.2) for local and string stability

only differ if the system is infinite or if it is closed (ring road). Mathematically

speaking, only local stability is well defined in open finite systems, i.e., in real-world

road networks. Does this mean that string instability is irrelevant in open systems?

Not necessarily since (i) even for a temporary initial perturbation of the leader, the

definition of local stability allows for a temporary growth of perturbations which is

excluded if the system is string stable, (ii) for practical purposes, a string of a few

hundred vehicles is sufficient to generate traffic waves, i.e., it represents already a

6 In general dynamic systems texts, stability types are typically defined in terms of a system re-

sponse to initial conditions with the system left to its own devices, afterwards. However, in the

driven open systems considered here, a nontrivial steady state implies a leader with a fixed trajec-

tory at all times. Therefore, we adapted the definitions correspondingly.
7 It may also be Ljapunov stable, i.e., the perturbations remain limited. However, this type of

stability does not play a role in this context, see also page 352.
8 At least, if the penetration level of ACC equipped vehicles is sufficiently small. Otherwise, the

influence of ACC-driven vehicles on the string instability becomes relevant as will be discussed in

the main text below.
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good approximation of an “infinite” system,9 (iii) when considering the response

to sustained (rather than temporary) perturbations of a leader, string stability rather

than local stability determines whether perturbations grow when propagating from

follower to follower as will be shown in Sect. 16.4.3 below.

Considering the responses to sustained perturbations of a leader in open systems

and heterogeneous vehicles, three categories of string stabilities are distinguished:

• Head-to-tail string stability: The last follower of a finite heterogeneous platoon

shows smaller perturbations than the leader although perturbations may grow

from vehicle to vehicle in between.

• Strict string stability: Perturbations always decrease from follower to follower.

• Asymptotic string stability: string stability of an infinite or closed system, i.e.,

string stability in the stricter sense.

Furthermore, a string instability can be of a convective or absolute nature, see

page 354 below.

As illustrated by Fig. 16.3, string stability is a much more restrictive concept

compared to local stability: Traffic flow may be string unstable even if speed fluc-

tuations within a vehicle platoon of finite size decay quickly, or even if there are no

local oscillations at all. An example of this latter case is given in the two sketched

situations in the middle of Fig. 16.2, in the simulations of Fig. 16.6, and particularly

in Problem 16.3. This has immediate practical implications for developers of ACC

controllers: Even if the ACC is optimized to be perfectly free of oscillations when

following a “test hare vehicle” driving a prescribed speed profile, traffic flow mainly

consisting of such ACC vehicles may be absolutely string unstable.

Since string instability is defined in terms of a collective phenomenon, it can be

applied to both microscopic and macroscopic models. To emphasize its macroscopic

nature, one also speaks of collective instability, or flow instability.10

Types of perturbation and asymptotic state: Ljapunov, asymptotic and struc-

tural stability. If we require that any sort of sufficiently small initial perturbations

remain small forever, we speak of Ljapunov stability. If we additionally require that

sufficiently small perturbations tend to zero for t → ∞, the system is asymptotically

stable. If we allow not only initial perturbations but also small persistent fluctua-

tions and all trajectories remain close to the unperturbed trajectories, the system is

structurally stable. These stability concepts are mainly used by mathematicians11

9 For a driver driving through stop-and-go traffic, it is little consolidation that the perturbations will

decay in the limit t → ∞.
10 Some authors stress that there is a conceptual difference between string instability (relevant for

microscopic models), and flow instability (macroscopic models). However, observed differences

are merely a consequence of an imperfect equivalence between microscopic and macroscopic mod-

els with respect to macroscopic phenomena (notice that microscopic models can describe macro-

scopic phenomena but not vice versa). The unified instability criteria to be developed in the next

sections show that the concepts of string and flow instability are identical in a precisely defined

sense: For each microscopic model displaying string instabilities in a subset of the space spanned

by the model parameters and the steady-state traffic density, there exists a micro-macro relation to

a macroscopic model displaying flow instability for exactly the same subset.
11 We do not give the precise mathematical definitions.
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and apply to arbitrary dynamical systems. For the traffic flow models with smooth

acceleration functions considered here, Ljapunov and asymptotic stability are equiv-

alent concepts.12 Since Ljapunov and asymptotic stability are defined in terms of

sufficiently small but otherwise arbitrary initial and asymptotic perturbations, these

concepts refer to linear string (or flow) stability when applied to traffic flow models.

When explicitly defining the latter in Eq. (16.4), we refer to asymptotic rather than

Ljapunov stability, i.e., we require that all small perturbations have negative growth

rates, i.e., they tend to zero.

Amplitude of perturbation: linear versus nonlinear instability. If arbitrarily

small perturbations increase in the course of time, one speaks of linear instabil-

ity. If small perturbations decay but sufficiently severe perturbations (caused, e.g.,

by hard braking maneuvers or inconsiderate lane changes) develop to persistent traf-

fic waves, this corresponds to nonlinear instability. As illustrated in Fig. 16.3, car-

following models or second-order macroscopic models generally have parameter

ranges where, for a certain range of steady-state densities, traffic flow is linearly

stable and simultaneously nonlinearly unstable, i.e., small perturbations decay and

larger ones develop to stop-and-go waves. This is termed metastability. As a con-

sequence of this type of instability, the future dynamics depends not only on the

present and future exogenous conditions but also on the past – for arbitrarily long

times. For example, given the same traffic demand profile, there may be growing

regions of congested traffic (a traffic breakdown occurred in the past), or completely

free traffic (no breakdown in the past). This dependence on the past (“path depen-

dence”) is also called hysteresis .
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Fig. 16.3 Sequence of stability types as a function of the inherent tendency to instabilities (hori-

zontal axis) and the amplitude of the initial perturbation. The string instability is convective in the

limit of reaching the boundary to stability, and absolute at the boundary of local instability.

12 The distinction may become relevant for models with non-smooth or even non-continuous accel-

eration functions. Typically, this is the case when the model formulation involves several distinct

traffic regimes (e.g., Gipps’ model or the Wiedemann model). Such models may be Ljapunov but

not asymptotically stable.
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In order that a perturbation can develop to a persistent jam, the outflow from the

congested region must be smaller than the inflow, i.e., the bottleneck capacity under

congested conditions (also known as active or activated bottleneck) must be smaller

than the maximum possible flow through the bottleneck under free-flow conditions

(static capacity). Observed values for the difference between the static and dynamic

capacities, the so-called capacity drop, are of the order of 10% (cf. Chapter 5.5).

Consequently, the fundamental diagram is not unique for densities in the metastable

range. Instead, there are two values for the flow, a higher one for free traffic, and a

lower one for congested traffic. For the graph of the fundamental diagram, this leads

to the characteristic shape of a mirrored Greek λ , also referred to as the inverse

lambda shape,13 cf. Fig. 5.16 and 5.17.

Formally, we define linear and nonlinear string instability in macroscopic terms

by considering an infinite system initially in steady state at density ρe and looking

at the spatiotemporal development of the response U(x, t) of a temporary and local-

ized perturbation Uε(x,0) of amplitude ε denoting, e.g., the difference between the

actual and steady-state local speed fields. If the initial perturbation corresponds to

a sudden change ε of speed of a single vehicle located at x = 0, the macroscopic

initial perturbation Uε(x,0) of the speed field is

Uε(x,0) =Uε(x) =

{

ε if |x|< 1
2ρe

, ε > 0, x ∈ IR,

0 otherwise.
(16.3)

This means, the speed field is changed by ε in a region whose width ∆x = 1/ρe cor-

responds to the distance between two vehicles, i.e., to the effective space attributed

to one vehicle. Traffic flow is linearly unstable if

lim
t→∞

max
x

U(x, t)> 0 for all ε > 0. (16.4)

It is nonlinearly unstable or metastable, if there exists a minimum perturbation am-

plitude εnl > 0 such that

lim
t→∞

max
x

U(x, t) =

{

U0 > 0 if ε > εnl,
0 if ε ∈ [0,εnl].

(16.5)

As illustrated in Fig. 16.3, the limit between linear instability and metastability is

defined by εnl → 0, while the limit between metastability and absolute stability is

given by Eq. (16.5) for the limit of a maximum perturbation, e.g., |ε |= V (braking

to a complete stop).14

Propagation of the perturbation: absolute versus convective instability. If traf-

fic flow is (linearly or nonlinearly) string unstable, the region of perturbations as

considered from a stationary observer can propagate in both directions (absolute

13 Although this is not correct: The Greek λ is mirrored and not upside down.
14 To make the perturbation more massive, the duration of the perturbation must be increased such

that it results in a fully-formed initial jam.
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string instability), or exclusively upstream or downstream which is termed upstream

and downstream convective instability, respectively (see Fig. 16.4).
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Fig. 16.4 Visualization of the spatiotemporal evolution of (a) convective upstream string instabil-

ity, and (b) absolute string instability by vehicle trajectories in a space-time plot. Shown are IDM

simulations with l = 5m, v0 = 120km/h, s0 = 2m, and b = 1.5m/s2, T = 1.5s, and acceleration

parameters a = 1.1m/s2 and a = 0.9m/s2 for the plots (a) and (b), respectively. Shown are the

trajectories of every 20th vehicle.

Convective instabilities were originally observed in open systems of fluid flows

such as water in pipes. In this case, the convective instability is of the downstream

type: perturbations leave the system together with the fluid after some time, i.e., they

are convected out of the system.15

In traffic flow, however, one observes that perturbations generally grow against

the driving direction and leave the system, i.e., the road section under consideration,

by the upstream boundary. Of course, this is particularly true for stop-and-go traffic

waves moving backwards at a constant velocity (cf. Section 21.3). We emphasize

that this propagation direction is not obvious: While the asymmetric interactions

of drivers (reacting essentially to the leading and hardly to the following vehicle)

ensure that, when considering a system comoving with the drivers, string instability

is always of the upstream convective type16 (cf. Figs. 16.4(a) and 16.11) both types

of convective instability are theoretically plausible in the fixed system. In fact, both

types can be reproduced in simulations. However, downstream convective instability

is not robust against nonlinear effects (cf. Fig. 16.5), so only upstream convective

instability is actually observed.

The distinction between convective and absolute instability is relevant since traf-

fic flow relates to an open system where absolute and convective instability leads to

qualitatively different congestion patterns:

• If traffic flow is absolutely string unstable, the perturbed region will sooner or

later cover the whole road section under consideration.

15 This technical term originates from the Latin convehi: to move together.
16 At least, if traffic flow is locally stable which is safe to assume.
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Fig. 16.5 Speed response functions for the initial localized perturbation (16.3). Shown are IDM

simulations of (a) convective instability propagating upstream, (b) linear convective instability

propagating downstream which is destroyed by nonlinearities, and of (c) the limit between con-

vective and absolute instability.

• If traffic flow is convectively string unstable, the perturbations eventually will

leave the system. Thus, in a given section, oscillations resulting from temporary

perturbations are not persistent even in the presence of linear instability. If there

are persistent local perturbations (e.g., lane changes near ramps or lane closures),

the oscillations are, of course, persistent as well. However, they are small near

the location of the perturbations (generally at a bottleneck), and increase in am-

plitude further upstream. All this is markedly different in closed systems (ring

roads) where there is no qualitative long-term difference between these stability

types.

Convective instability is a widespread phenomenon. For example, all oscillations

and traffic waves on the German highway A5 (Fig. 6.1) are the consequence of con-

vective instability driven by persistent perturbations near the bottlenecks. In con-

trast, city traffic flow generally is stable and stop-and-go conditions are the trivial

consequence of the operations of traffic lights. In Section 16.6 we show that string

instability always starts as a convective instability (cf. Fig. 16.3). From a multitude

of observations, we conclude the following:

The vast majority of all instabilities of highway traffic flow is of the convective

type.

Formally, one can define convective instability in terms of the dynamics of the

perturbation field U(x, t) for a given localized and temporary initial perturbation

Uε(x) according to Eq. (16.3): Homogeneous flow is convectively unstable with

respect to this perturbation, if

lim
t→∞

max
x

U(x, t)> 0 and lim
t→∞

U(0, t) = 0. (16.6)
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The first condition is true if traffic flow is (linearly or nonlinearly) string unstable,

i.e., the initial perturbation does not decay to zero, at least somewhere in the system.

The second condition states that the perturbations eventually vanish at the location

of the initial triggering point.17

By analogy one can define absolute string instability by requiring the first condi-

tion to be true, and the second to be false. By suitably combining these conditions

with Eq. (16.5), one can define in a straightforward way convective and absolute

linear instability and metastability (nonlinear instability).

Stability in stochastic models. We can determine the behavior in the presence

of acceleration noise or other fluctuations described by stochastic models from the

above definitions of convective and nonlinear instability:

• If the noise is of sufficiently low amplitude to allow a linear analysis, we obtain

persistent fluctuations for any type of linear string or flow instability. In contrast,

if a deterministic model describes convectively unstable traffic flow in open sys-

tems, all initial perturbations are eventually convected out of the system. This

means, small fluctuations change the qualitative behavior in such systems while

they have not much influence, otherwise.

• If the noise is of sufficient amplitude to warrant a nonlinear description, it can

trigger nonlinear instabilities. This means, larger-amplitude noise can change the

qualitative system behavior with respect to the deterministic description if the

system is convectively or absolutely metastable.

Wavelength of the perturbations. Since traffic flow represents an extended sys-

tem which can be abstracted to an infinitely long homogeneous road, there is,

in principle, an infinite multitude of perturbations leading to instabilities. In Sec-

tion 16.4, we show, that the perturbations can be arranged in two branches or

“modes” of periodic perturbations with arbitrary real-valued wavelengths. However,

we can only observe the perturbations becoming first unstable when increasing the

traffic density (or making the model more unstable): Once nonlinearities become

effective (saturation, capacity drop, reversal of the propagation velocity), all other

perturbations are suppressed.

Depending on the nature of the onset of the “first” instability, we distinguish two

categories: In the presence of short-wavelength instabilities, the first instability has a

finite and typically short wavelength of only a few vehicle distances, i.e., each wave

consists of only a few vehicles. In contrast, if there is a long-wavelength instability,

the wavelength of the “first” unstable perturbation tends to infinity. Since vehicle

conservation implies that the growth rate tends to zero when the wavelength tends

to infinity regardless of the degree of (in-)stability, the practically observed waves

originating from long-wavelength instabilities, i.e., the perturbations with maximum

growth rate, are large but finite (of the order of 1 km or more). Mathematicians have

shown that instabilities are always of the long-wavelength type

• for continuous-in-time car-following models containing no explicit reaction time

(such as the OVM or the IDM)

17 More generally, the perturbations eventually vanish at any fixed location x for t → ∞.
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• for second-order local macroscopic models such as Payne’s model or the Kerner-

Konhäuser model.

In contrast, the instability may be (but need not to be) of the short-wavelength type

if

• time is discrete (iterated maps, e.g., Gipps’ model),

• explicit reaction times are modeled (HDM, cf. Section 13.2),

• or nonlocal macroscopic models (such as the GKT model) are considered.

This means, the first instability may be of the short-wavelength type if the model

contains some nonlocalities in space or time. Since observed instabilities are always

of the long-wavelength type, one can restrict the further analysis to this category.

Conversely, if one observes short-wavelength instabilities in the simulations,18 this

must be considered as an artifact of the model, or the consequence of an erroneous

(or erroneously parameterized) numerical integration method.

16.3 Local Stability

We consider a situation where a leading vehicle drives at constant speed and inves-

tigate small changes y(t) and u(t) of the gap and speed of a single follower with

respect to the steady-state equilibrium:

s(t) = se + y(t), (16.7)

v(t) = ve +u(t). (16.8)

When analyzing local stability, it is essential that the leading vehicle does not exhibit

persistent perturbations since the question whether persistent perturbations are am-

plified when transferred to the following vehicles refers to string instability. Further-

more, instead of considering an initial perturbation of the leader, we can investigate

an unperturbed leader and an initial perturbation of the follower as specified above.

Inserting this ansatz into the general formulation (11.3), (11.6) of time-continuous

models, we obtain, in zeroth order of the perturbations (y = u = 0), the steady-state

conditions

f (se,ve,ve) = 0 and f̃ (se,ve,0) = 0 (16.9)

for the two forms f and f̃ of the acceleration function, respectively (cf. Sec-

tion 11.4). These conditions define the microscopic fundamental diagram in terms

of the steady-state gap se for a certain constant speed ve which can be written as

ve(se) (steady-state speed for a given gap), or se(ve) (steady-state gap for a given

speed).

In first order of the perturbations y and u of the follower, we obtain, for mod-

els defined by the acceleration function f , the following system of ordinary linear

18 For example, Gipps’ model in its original formulation exhibits a short-wavelength instability

with the smallest possible wavelength of two car distances.
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differential equations:

dy

dt
= ul −u =−u, (16.10)

du

dt
= fsy+ fvu+ flul = fsy+ fvu. (16.11)

Notice that the assumed constant speed of the leading vehicle implies ul = 0. The

coefficients fs, fv, and fl of the linearization originate from a first-order Taylor ex-

pansion of the acceleration function f with respect to its three independent variables

around the steady-state equilibrium,

f (s,v,vl) = f (se,ve,ve)+ fsy+ fvu+ flul + higher orders (16.12)

with, by definition, f (se,ve,ve) = 0 and the expansion coefficients

fs =
∂ f

∂ s

∣

∣

∣

∣

e

, fv =
∂ f

∂v

∣

∣

∣

∣

e

, fl =
∂ f

∂vl

∣

∣

∣

∣

e

. (16.13)

The subscript e denotes that the derivatives are evaluated at the steady-state point

s = se and v = vl = ve(se).
By virtue of condition (16.9) describing a one-dimensional manifold of steady-

state solutions ve(s), the three Taylor coefficients are not independent of each other.

Moving along the space of steady-state solutions by simultaneously changing s and

v = vl must not change the acceleration (which is always zero), i.e.,

fsdse +( fv + fl)dve = fsdse +( fv + fl)v′e(se)dse = 0 (16.14)

resulting in

v′e(se) =− fs

fv + fl

. (16.15)

Expanding the general acceleration equation (11.3) for the alternative accelera-

tion function f̃ (s,v,∆v) to first order leads to the linear system

dy

dt
= ul −u =−u, (16.16)

du

dt
= f̃sy+

(

f̃v + f̃∆v

)

u− f̃∆vul = f̃sy+
(

f̃v + f̃∆v

)

u. (16.17)

with the Taylor expansion coefficients

f̃s =
∂ f̃

∂ s

∣

∣

∣

∣

e

, f̃v =
∂ f̃

∂v

∣

∣

∣

∣

e

, f̃∆v =
∂ f̃

∂∆v

∣

∣

∣

∣

e

. (16.18)

Comparing Eq. (16.11) with Eq. (16.17), it is evident that one needs to consider

only one formulation of the acceleration function which we chose to be f (s,v,vl).
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Formulations for the alternative acceleration function f̃ (s,v,∆v) can be obtained

from that for f by the following set of replacements:19

fs = f̃s, fv = f̃v + f̃∆v, fl =− f̃∆v. (16.19)

This is valid for all expressions in this chapter, including these for string instabil-

ity. As an example, when applying the replacement rules to the steady-state condi-

tion (16.15), we obtain following relation for the microscopic fundamental diagram:

v′e(s) =− f̃s

f̃v

=− fs

fv + fl

. (16.20)

16.3.1 Single Leader-Follower Pair

Equations (16.10) and (16.11) describe a harmonic damped oscillator. To see this

explicitly, we write them as a single second-order differential equation by taking the

time derivative of Eq. (16.10) and inserting Eq. (16.11),

d2y

dt2
+2η

dy(t)

dt
+ω2

0 y(t) = 0. (16.21)

The damping constant η and the angular oscillation frequency ω0 are given by

η =− fv

2
=−

(

f̃v + f̃∆v

)

2
, ω2

0 = fs = f̃s. (16.22)

Assuming the exponential ansatz

y = y0eλ t (16.23)

we arrive at the quadratic equation

λ 2 +2ηλ +ω2
0 = 0 (16.24)

for the (generally complex) growth rate λ = σ + iω (i =
√
−1 is the imaginary unit)

with the solutions

λ1/2 =−η ±
√

η2 −ω2
0 . (16.25)

The dynamics of the follower is locally stable if both solutions decay, i.e., the real

parts are negative, σ1/2 = Re(λ1/2)≤ 0. This is satisfied if η > 0, or, with the defi-

nitions (16.22)

19 We emphasize that we have defined the relative speed ∆v = v−vl as the approaching rate. Some

publications define it as the negative approaching rate which means that all signs of ∆v and f̃∆v are

swapped.
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fv < 0 or f̃v + f̃∆v < 0 Local stability. (16.26)

Since, by virtue of condition (12.1), fv < 0 for all plausible models, we conclude that

time-continuous car-following models without additional delay by explicit reaction

times are unconditionally locally stable.

As a more restrictive condition on the local behavior, we can require that all

deviations from the steady-state decay are without oscillations, not even damped

ones. This is the case if the imaginary parts of the growth rates are zero leading to

ω2
0 < η2, or fs ≤ f 2

v /4. Expressing fs by the sensitivity v′e(s) to changes of the gap,

we obtain the following no-oscillation conditions (cf. the left column of Fig. 16.6):

fs ≤
f 2
v

4
or v′e(s)≤

− f̃v

4

(

1+
f̃∆v

f̃v

)2

No local oscillations. (16.27)

Here, the transformation rules (16.19) and (16.20) have been applied to arrive at the

second condition for models given in terms of the acceleration function f̃ (s,v,∆v).
In summary, we can make the following statements on local instability:

• Since fv < 0 for all sensible models and the above considerations are valid for

time-continuous car-following models without explicit reaction-time delay, such

models are always locally stable. However, this need not to be the case for iter-

ated maps (Gipps’ Model), or when considering explicit reaction times by delay-

differential equation as in the HDM.

• The more restrictive no-oscillation or overdamped oscillator condition (16.27) is

not always satisfied. For example, we obtain for the Optimal Velocity Model20

the condition

v′e(s)OVM <
1

4τ
. (16.28)

This condition is more restrictive as the condition v′e(s)OVM < 1/(2τ) for string

stability to be derived in the following section. As can be seen by the derivation,

this relation between the thresholds of over-damped local stability and string sta-

bility is valid for any car-following model without sensitivity to speed differences

that is formulated by ordinary differential equations.

• Near the threshold to string instability, the oscillations of a single vehicle when

approaching the local steady state are hardly recognizable (cf. right column of

Fig. 16.6). Reasoning in the converse direction, we conclude that when a vehicle

driving with adaptive cruise control shows recognizable oscillations, it is nearly

certain that traffic flow consisting of such vehicles is string unstable, even if the

oscillations of the single vehicle are strongly damped. Considering models with

the speed difference as exogenous factor, the model may even be completely

free of oscillations in the local context, and simultaneously string unstable when

considering traffic flow with many vehicles (cf. Problem 16.3).

20 The partial derivatives of the acceleration function are fv =−1/τ , fl = 0, fs =−v′e(s) fv.
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Fig. 16.6 Response of an OVM vehicle to a speed reduction of the leading vehicle (driving a

fixed speed profile) from 72 km/h to 54 km/h. Left: At the limit of an oscillation-free response

(v′e = 1s−1, τ = 0.25s). Right: Limit of string instability (v′e = 1s−1, τ = 0.5s).

16.3.2 More Than One Follower

For reasons of simplicity, the derivation above was restricted to a single follower, for

example, a car with adaptive cruise control (ACC) following another car. The ques-

tion arises if the condition for local stability changes when considering more than

one follower. To investigate this case, we need to consider the full linearized equa-

tions for vehicle j including the leading vehicle j−1. Assuming identical vehicles

and drivers, we generalize the system (16.10), (16.11) to

dy j

dt
= u j−1 −u j, (16.29)

du j

dt
= fsy j + fvu j + flu j−1. (16.30)

Now we differentiate (16.30) and apply (16.29) to the right-hand side of the resulting

equation to obtain a coupled differential equation solely in u j and u j−1,

d2u j

dt2
= fs

dy j

dt
+ fv

du j

dt
+ fl

du j−1

dt
= fs(u j−1 −u j)+ fv

du j

dt
+ fl

du j−1

dt

For each vehicle j, this is an inhomogeneous second-order linear ordinary differen-

tial equation with the respective leader acting as the inhomogeneity:

(

d2

dt2
− fv

d

dt
+ fs

)

u j =

(

fl

d

dt
+ fs

)

u j−1 (16.31)

The same differential equation is also valid for the gap deviations y j. According to

the definition (16.1) of local stability, the perturbation of the leader u0(t) = 0 for

all t > t0. For the first follower j = 1, this means that, for t > t0, (16.31) reverts to
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a homogeneous differential equation which, in fact, is equivalent to (16.21). This

means that u1(t) decays to zero if the local stability criterion (16.26) is satisfied.

Applying this reasoning recursively to the next followers, we find that u j(t) = 0 for

t → ∞ as long as (16.26) is valid and j remains finite:

The criterion (16.26) for local stability is valid for any finite number of fol-

lowers.

16.3.3 Models with Delay

In contrast to time-continuous models of the form (11.3) as discussed above, time-

continuous models with delay, i.e., delay-differential equations of the form (13.1)

modeling a finite reaction time, or time-discrete models (iterated maps) of the

form (11.7) may become locally unstable. Performing the same stability analysis

as above for models of the form (13.1), i.e., models whose acceleration equation is

of the form d
dt

v(t +Tr) = f̃ (s(t),v(t),∆v(t)), we obtain

λ 2 + e−λTr
(

2ηλ +ω2
0

)

= 0. (16.32)

In spite of its simple appearance, solving this equation for the growth rate λ =
σ + iω is nontrivial and can be done only numerically. For sufficiently high delay

times (more than 2.0 s for the IDM with the highway parameters of Table 12.2),

the real part σ of the most unstable solution becomes positive for some steady-state

situations, i.e., the model becomes locally unstable (Fig. 16.7).

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 5  10  15  20  25  30

σ 
[1

/s
], 

  ω
 [1

/s
]

ve[m/s]

σIDM,1
σIDM,2
ωIDM,1
ωIDM,2

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5  10  15  20  25  30

σ 
[1

/s
], 

  ω
 [1

/s
]

ve[m/s]

σIDM
ωIDM

T r =0.0 s
T r =2.0 s

Fig. 16.7 Left: The two branches of the linear growth rate λ = σ + iω according to Eq. (16.25)

for the conventional IDM with the standard highway parameters of Table 12.2 as a function of the

steady-state speed. Right: Most unstable branch of the solutions to Eq. (16.32) for the IDM with

an additional delay by the reaction time Tr = 2.0s (no other human driver properties added).
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16.4 String Stability of Car-Following Models

Even if a system consisting of a single or a few vehicles following a leader with

a fixed speed profile is well within the stable range, the oscillations may increase

with each following vehicle, i.e., traffic flow is string unstable (cf. Figs. 16.1, 16.2

and 16.8).
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Fig. 16.8 Interactive simulation of stop-and-go waves with the Intelligent Driver Model (IDM) on

the authors’ website https://traffic-simulation.de.

Generally, the resulting oscillations or waves have a wavelength of 1 km or more,

i.e., a single wave contains many vehicles corresponding to a long-wavelength insta-

bility This is fortunate since it allows compact analytical expressions for the stability

thresholds of time-continuous car-following models and macroscopic models.

16.4.1 String Stability Criteria

We start with the general formulation (11.3), (11.6) of time-continuous car-following

models without delay and without multi-anticipation. Furthermore, we consider

identical driver-vehicles on a homogeneous infinite road, i.e., the same acceleration

functions and identical parameter sets for all vehicles. The set of coupled equations

for the gap s j and the speed v j reads

https://traffic-simulation.de
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ds j

dt
= v j−1 − v j, (16.33)

dv j

dt
= f

(

s j(t),v j(t),v j−1(t)
)

. (16.34)

As in the analysis for local instability, we assume, for all vehicles j, small deviations

y j and u j from the steady-state gap se and speed ve, respectively,

s j = se + y j(t), (16.35)

v j = ve +u j(t). (16.36)

In zeroth order with respect to y j and u j, we obtain the same result as for the lo-

cal analysis: The microscopic fundamental diagram ve(s) and the relations (16.15),

(16.19) and (16.20) remain valid.

In first order, we obtain the following system of coupled linear differential equa-

tions with constant coefficients:

dy j

dt
= u j−1 −u j, (16.37)

du j

dt
= fsy j + fvu j + flu j−1, (16.38)

where the partial derivatives fs, fv, and fl are given by (16.13). Formally, this is

the same set as (16.29) and (16.30). However, we now consider these equations

as an infinite coupled set with initial perturbations everywhere rather than a finite

sequence of differential equations with a temporary perturbation of a single leader,

only. The appropriate approach is therefore the Fourier-Ansatz

(

y j(t)
u j(t)

)

=

(

ŷ

û

)

eλ t+i jk (16.39)

corresponding to linear waves of strict periodicity whose Fourier amplitudes ŷ(k)
and û(k) are determined by the initial perturbations. This ansatz contains the fol-

lowing elements:

• i =
√
−1 is the imaginary unit.

• λ = σ + iω is the complex growth rate. The real part σ denotes the growth rate

of the oscillation amplitude while the imaginary part ω indicates the angular

frequency from the perspective of the driver. The driver passes a complete wave

in the time 2π/ω .21

• The dimensionless wave number k ∈ [−π,π] indicates the phase shift of the traf-

fic waves from one vehicle to the next at a given time instant. Consequently, the

number of vehicles per wave is given by 2π/k. Since the steady-state distance

21 Since ω is defined with respect to the vehicle index which is increasing for decreasing x, we

have defined the imaginary part of the wave exponent to be ωt + k j rather than the conventional

ansatz ωt − k j. Thus, ωt + k j corresponds to ωmact − kx, see Eq. (16.115) below and both ω and

ωmac are generally negative reflecting waves travelling upstream.
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between the front bumpers of two vehicles is equal to se + l = 1/ρe, the physical

wavelength is given by (se + l)2π/k.

• The phase velocity is defined by the movement of points of constant phase, i.e.,

by a constant imaginary part ωt + jk of the exponent of Eq. (16.39). This gives

rise to following quantities:

– The passing rate

j̇ =−ω

k
(16.40)

denotes the vehicle flux through the waves in a coordinate system moving

with the waves,22 i.e., with points of constant phase ωt + jk. Since ω(k) < 0

for k > 0, the passing rate is positive: The waves propagate in the direction of

increasing vehicle indices, i.e., opposite to the movement of the vehicles.

– In physical space, the relative propagation velocity in the system comoving

with the vehicles is given by23

c̃rel(k) = (se + l)
ω

k
=

ω

ρek
. (16.41)

– In the fixed system of a stationary observer at the road side, the positive

steady-state speed of the vehicles has to be added to the negative relative ve-

locity,

c̃(k) = ve(se)+ c̃rel(k). (16.42)

This road-based propagation velocity is the one that can be derived from traffic

data. In order to be consistent with observations, the long-wavelength limit

c̃ = limk→0 c̃(k) should be of the order of −15km/h, in congested situations.

• The traffic waves include periodic changes of both gap and speed. The fraction

û/ŷ of the prefactors indicates the relation between the respective amplitudes.

For example, a traffic wave described by û = 0 would consist of gap changes,

only.

Inserting the traffic wave ansatz (16.39) in the linear system (16.37), Eq. (16.38)

results in
(

λ 1− e−ik

− fs λ −
(

fv + fle
−ik
)

)

·
(

ŷ

û

)

= 0. (16.43)

This linear-homogeneous 2×2 system for the amplitudes has only nontrivial solu-

tions if the determinant of the matrix of coefficients is equal to zero. The resulting

solvability condition assumes the form of a quadratic equation

λ 2 + p(k)λ +q(k) = 0 (16.44)

for the complex growth rate λ with solutions given by (cf. Fig. 16.9)

22 This technical term has to be distinguished from passing in the sense of overtaking which is

completely unrelated.
23 Since the vehicle index is decreasing for increasing x, the sign is reversed with respect to

Eq. (16.40). With ω/k < 0, the waves propagate upstream, i.e., in negative x direction.
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λ1/2(k) =− p(k)

2

(

1±
√

1− 4q(k)

p2(k)

)

(16.45)

where

p(k) =− fv − fle
−ik,

q(k) = fs

(

1− e−ik
)

.
(16.46)

Typically, one solution is fast decaying (Reλ is strongly negative) while the other,

also called the “slow mode”, decays more slowly, or even grows. Only the latter is

relevant for investigating string stability. We therefore define the complex, real, and

imaginary growth rate of the slow mode as follows:

λ (k) =

{

λ1(k) Re(λ1(k))≥ Re(λ2(k))
λ2(k) otherwise.

(16.47)

σ(k) = Re(λ (k)) (16.48)

ω(k) = Im(λ (k)) (16.49)

For a given phase shift k between two consecutive vehicles, the actual solution

(ŷ, û) of the slow mode (the eigenvector) gives the amplitudes and the phases of the

gap and speed oscillations. Since the eigenvector is only defined up to a (complex)

common factor, it essentially gives the relation of the amplitudes and the relative

phase between the speed and gap oscillations.

We can now define string stability:

A car-following model is string stable (a macroscopic model is flow stable) if

σ(k)≤ 0 for all relative phase shifts (wave numbers) in the range k ∈ [−π,π].

Furthermore, we distinguish the type of instability as follows:

When making the model more unstable by changing a control parameter (e.g.,

the acceleration parameter a) the emerging string instability (σ(k) > 0) is of

the long-wavelength type if it arises at k → 0. If the first instability appears at

a finite phase shift (wave number) k0, it is of the short-wavelength type.

In Sect. 16.4.3, we will prove that the first instability of time-continuous models

without delay times is always of the long-wavelength type. Since only waves of a

finite wavelength can have finite growth rates, the resulting wavelengths are finite

but consist of many vehicles and the onset of instability is very slow. We illustrate

this by Figure 16.9: The middle curve corresponds to a maximum of the growth

rate at k0 ≈ 0.13 corresponding to 2π/k0 ≈ 50 vehicles per wave, in agreement with

observations of real traffic waves.
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Fig. 16.9 Linear growth rate σ(k) of a congested steady state (ve = 48km/h, ve/v0 = 0.4) accord-

ing to (16.48) for the Intelligent Driver Model (IDM) as a function of the scaled wave number

(phase shift) k for three values of the IDM acceleration parameter a. The remaining IDM parame-

ters are v0 = 120km/h, T = 1.5s, s0 = 2m, b = 1.3m/s2, and the vehicle length is l = 5m.

Restricting the further investigations to wave numbers |k| ≪ π , we expand the

coefficients of the quadratic equation for λ (k) in a Taylor series around k = 0:24

p(k) = p0 + p1k+O(k2),

q(k) = q1k+q2k2 +O(k3),
(16.50)

with

p0 =−( fv + fl) =− f̃v,

p1 = i fl =−i f̃∆v,

q1 = i fs = i f̃s = iv′e(se)p0,

q2 =
fs

2
=

f̃s

2
=

v′e(se)

2
p0.

(16.51)

The prefactors p0 and q2 are real-valued while p1 and q1 are purely imaginary.

Notice that the expressions for q1 and q2 on the right-hand sides of the last equal

sign follow from Eq. (16.15) and Eq. (16.20). Since there are no zero-order terms of

q(k), and the general criteria for sensible microscopic models imply that p0 = − f̃v

is strictly positive, the real part of λ can (in lowest order) become positive only for

the solution with the negative sign of the square root of Eq. (16.47). Expanding this

solution around k = 0 to quadratic order making use of the expansion

√
1− ε = 1− 1

2
ε − 1

8
ε2 +O(ε3) (16.52)

for complex-valued ε , we arrive at the general expression

24 The “order” symbol O(·) defines how fast the symbolized contributions converge to zero.

Specifically, if a contribution f (k) is of the order O(kγ ), then limk→0 k−γ f (k) is finite, and

limk→0 k−γ+ε f (k) = 0 for any positive real-valued ε .
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λ (k) =− q1

p0
k+

(

q1 p1

p2
0

− q2

p0
− q2

1

p3
0

)

k2 +O(k3), (16.53)

which is also valid for the second-order macroscopic models to be discussed below.

A long-wavelength string instability is characterized by a positive (always real)

second-order coefficient of the more unstable solution λ (k),

σ ′′(0) = λ ′′(0) =
p0q1 p1 − p2

0q2 −q2
1

p3
0

. (16.54)

So a necessary (and for homogeneous traffic flow without reaction times sufficient)

string stability criterion is given by a nonpositive value of this coefficient. Because

the general plausibility criteria (Sect. 12.1) imply p0 > 0, the general criterion for

string stability (and macroscopic flow stability) can be expressed as

p0q1 p1 − p2
0q2 −q2

1 ≤ 0 String stability. (16.55)

Inserting the expansion coefficients (16.51) in terms of the sensitivities fs, fv,

and fl of time-continuous microscopic models into Eq. (16.53) gives

λ =−iv′e(se) k+
v′e(se)

fv + fl

[

1

2
( fl − fv)− v′e(se)

]

k2 +O(k3). (16.56)

The growth rate λ tends to zero for k = 0. This is a direct consequence of the conti-

nuity equation. By virtue of the conservation of the number of vehicles, traffic waves

of infinite wavelength (or wave number k = 0) cannot dissolve since there is simply

no way for the vehicles to leave the wave.

The contribution linear in k is purely imaginary and therefore describes the prop-

agation properties of the waves for small phase shifts between consecutive vehicles.

Since we have set λ = σ + iω , we have ω =−v′e(se)k+O(k3) and arrive at the fol-

lowing simple expression for the relative (Lagrangian) propagation velocity (16.41)

of the traffic waves:

c̃rel(k) = (se + l)
ω

k
=−(se + l)v′e(se)+O(k2). (16.57)

Notice that, in this equation, the acceleration function of the model enters only in-

directly via the gradient v′e(s) =− f̃s/ f̃v =− fs/( fv + fl) of the microscopic funda-

mental diagram ve(s). Since v′e(s) ≥ 0 and, consequently, c̃rel ≤ 0, the waves prop-

agate against the direction of the flow, at least in the coordinate system comoving

with the drivers. This is plausible since the considered class of car-following models

represents drivers reacting only to the leading but not to the following vehicle. In

the limit of completely interaction-free traffic corresponding to ve = v0, v′e(s) = 0,

we have c̃rel = 0, i.e., the waves move with the vehicles. In fact, the waves can be

interpreted as independently moving vehicle clusters, in this limiting case.

The second-order contribution of the growth rate (16.56) is purely real, and there-

fore describes the growth properties of the waves. In particular, traffic flow is long-
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wavelength string stable if this term is negative. Inserting into (16.55) the expansion

coefficients (16.51) results in the following criterion for string stability:

v′e(se)≤
1

2
( fl − fv) String stability for v̇ j = f (s,v,vl). (16.58)

For models whose acceleration function is of the form f̃ (s,v,∆v), we apply the

replacements (16.19) and obtain the alternative condition25

v′e(se)≤− f̃v

2
− f̃∆v String stability for v̇ = f̃ (s,v,∆v). (16.59)

Formulation in terms of linear sensitivities alone. Since many publications give

the string stability in terms of the linear sensitivities of the microscopic model alone,

we will also provide them here, for reference. Replacing v′e(se) with the sensitivities

using (16.20) gives the alternative criteria

2 fs − f 2
v + f 2

l ≤ 0, (16.60)

2 f̃s − f̃ 2
v −2 f̃v f̃∆v ≤ 0. (16.61)

Discussion. The above criteria for string stability directly point to the three main

factors determining the stability of traffic flow with respect to collective perturba-

tions. It is most convenient to extract these factors from the formulation (16.59).

Firstly, a necessary condition for string instability is a sufficient sensitivity

v′e(s) ≥ 0 to changes of the gap (left-hand side of Eq. (16.59)): Without this sen-

sitivity, there is no feedback, and the instability mechanism discussed qualitatively

in Section 16.1 would break down already in the first step. The drivers simply ig-

nore the vehicles in front of them. Since this is a plausible behavior for low traffic

densities, only, it explains why a minimum traffic flux and density is necessary for

generating traffic flow instabilities.

Secondly, string instability implies that the sensitivity − f̃v/2 > 0 to speed

changes, i.e., the first term of the right-hand side of Eq. (16.59) remains below a

certain threshold v′e(se)+ f̃∆v. In terms of the driver’s behavior this means that re-

sponsive or agile drivers corresponding to high values of − f̃v tend to suppress string

instabilities.

Thirdly, string instabilities are only possible if the sensitivity − f̃∆v to speed dif-

ferences remains below a certain threshold. In agreement with common sense, driv-

ers without any sensitivity to speed differences drive very short-sightedly and tend

to make traffic flow more unstable. Since future gaps can be estimated by speed

differences, one can conclude that − f̃∆v describes a simple form of anticipation.

In summary, the stability analysis shows that the factors favoring string insta-

bility are (i) sufficiently dense or congested traffic, (ii) drivers with little agility,

25 We reiterate that there are two conventions for the relative speed ∆v. If it is defined as ∆v= vl −v

instead of the approaching rate ∆v = v− vl , the signs of f̃∆v reverse while the conditions (16.58)

and (16.60) are unchanged.
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and (iii) a driving style characterized by little anticipation. This observation can be

used as a starting point for increasing traffic flow stability by driver-assistance sys-

tems (cf. Section 25.4), or for formulating rules for effective driving to be taught

in driving schools. Even if stop-and-go conditions prevail, anticipative drivers (or

suitable ACC systems) react earlier to braking maneuvers of the preceding vehicles

than their more short-sighted peers thereby reducing the inflow to the traffic waves.

Moreover, responsive and anticipative drivers (or ACC-driven vehicles) leave traffic

waves faster than their more sluggish and short-sighted contemporaries. With less

inflow and more outflow, even existing traffic waves eventually will dissolve.

Interactive simulations. All three factors of string instability can be interac-

tively simulated at the authors’ website26 using the ring-road scenario depicted in

Fig. 16.8. In the default setting, traffic flow is unstable and traffic waves emerge

after some time. These waves can be suppressed by each of the following actions:

• Reducing the “average density” via the top scrollbar. This reduces the overall

interactions and thus the positive destabilizing feedback characterized by v′e(s).
• Increasing the “acceleration a” by controlling the corresponding scrollbar. This

makes the drivers more agile and corresponds to increasing the sensitivity − f̃v

(see also Fig. 16.9).

• Decreasing the (comfortable) “deceleration b”. Since one needs to react earlier

in order to reduce decelerations, this corresponds to increasing the level of antic-

ipation − f̃∆v.

The latter two actions can also be applied to the other simulation scenarios.

16.4.2 Extension to Multi-Anticipation

When modeling human drivers (Chapter 13) or adaptive-cruise control (ACC) with

communication to other vehicles (cooperative ACC, CACC), the driving response

does not only depend on the immediate leader but extends to the next-nearest leaders

further ahead. Since information in vehicle platoons generally travels backwards,27

looking further ahead gains valuable time to respond to new situations. Here, we

analyze to which extent this will stabilize traffic flow.

Generalized form of multi-anticipative models. In contrast to car-following mod-

els in the stricter sense, it is more efficient to formulate general multi-anticipative

models in terms of position differences rather than gaps. Since, regarding stability,

we can set all vehicle lengths equal to zero,28 both representations are equivalent if

we replace the independent variables “positional differences” by the sum of all gaps

26 see: https://traffic-simulation.de
27 Since we are in the moving-observer (Lagrangian) perspective, this even applies to noncongested

traffic.
28 The vehicle itself is just a rigid body without internal dynamic effects through which the infor-

mation propagates instantaneously.

https://traffic-simulation.de
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(cf. Eq. (13.11)). Since microscopic stability and the growth rate, e.g., Eq. (16.47),

is formulated in terms of the phase shift or scaled wavenumber k, the vehicle length

enters only when transforming the scaled wavenumber to a physical wave num-

ber via kphys = (se(v)+ lveh)k. This affects the onset of convective instability (see

Sect. 16.6) but not the onset of string stability as such.

In addition to a response to multiple leaders, we will also include a response to

the immediate follower since it can also influence the driving behavior, e.g., by light

signals or the horn.

Inserting the speed definition v j = ẋ j, the general multi-anticipative car-following

model for M leaders and one follower can be written as a set of coupled second-order

differential equations for the positions x j,
29

ẍ j = f
(

x j+1 − x j,x j−1 − x j, . . . ,x j−M − x j, ẋ j+1, ẋ j, ẋ j−1, . . . , ẋ j−M

)

. (16.62)

Linearization. The homogeneous steady state defining the microscopic fundamen-

tal diagram ve(∆xe) is given by

0 = f (−∆xe,∆xe, . . . ,M∆xe,ve, . . . ,ve). (16.63)

Linearizing (16.62) around the small positional perturbations y j of each vehicle j

defined by x j(t) = vet − j∆xe + y j(t) gives

ÿ j =
M

∑
m=−1

( fsm(y j−m − y j)+ fvmẏ j−m) (16.64)

with

fsm =

(

∂ f

∂ (x j−m − x j)

)

e

, −1 ≤ m ≤ M, fs0 = 0 (16.65)

and

fvm =

(

∂ f

∂v j−m

)

e

, −1 ≤ m ≤ M. (16.66)

Inserting the wave ansatz y j(t) = ŷexp(λ t + i jk) results in a quadratic equation for

the dispersion relation λ (k) that is formally equivalent to (16.44),

λ 2 + p(k)λ +q(k) = 0,

with the functions

p(k) =−
M

∑
m=−1

fvme−imk, q(k) =
M

∑
m=−1

fsm

(

1− e−imk
)

. (16.67)

29 In case of heterogeneity, the functions f (·) = f j(·) are different for each vehicle but we will not

consider this further, here (cf. Sect. 16.4.3).
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Notice that for the special case of a classical single-leader car-following model with

M = 1, fv,−1 = fs,−1 = fs0 = 0, fv0 = fv, fv1 = fl , and fs1 = fs, we revert to the

relations (16.46) derived earlier.

As in the single-leader case, the first instability is a long-wavelength one and

string stability is characterized by a nonpositive quadratic Taylor coefficient in (16.44),

i.e., by (16.55) with

p0 =−∑
m

fvm, p1 = i∑
m

m fvm, q1 = i∑
m

m fsm, q2 =
1

2
∑
m

m2 fsm. (16.68)

16.4.3 String Stability for Open Systems: Transfer Function

While the wave ansatz (16.39) is suitable for infinite systems (continuous wave num-

ber k) and closed systems (the system length is a multiple of the wavelength 2π/k),

a different approach is suitable for open systems where the dynamics of a finite

or infinite sequence of followers of a given leader trajectory is to be investigated.

Specifically, the perturbation is no longer momentary and everywhere (initial con-

dition) but permanently sustained and localized (a single leader is perturbed). Con-

sequently, we decompose the perturbation into temporal rather than spatial Fourier

modes. This ansatz also allows more easily the generalization to heterogeneous pla-

toons, time delays, and lower-level controllers. The stability of multi-anticipative

models, however, is better analyzed using the wave ansatz (Sect. 16.4.2).

For finite platoons we have already derived that the local stability of a finite

platoon is the same as that of a single follower, i.e., that a finite-time perturbation

of the leader will not lead to permanent perturbations of any follower (Sect. 16.3.2).

Here, we investigate the related but different problem that the leader has permanent

perturbations (that can be decomposed in a temporal Fourier series) and how these

perturbations propagate from follower to follower.

We start with the Laplace transformation ansatz u j(t) = û je
λ t for the speed per-

turbations of follower j with the complex growth rate λ = σ + iω .30 Inserting this

into (16.31) results in

(

λ 2 −λ fv + fs

)

û j = (λ fl + fs) û j−1, (16.69)

which can be formulated in terms of a complex transfer function

G(λ ) =
û j

û j−1
=

ŷ j

ŷ j−1
=

λ fl + fs

λ 2 −λ fv + fs

(16.70)

relating the perturbations of the follower to that of the leader. Assuming that the

perturbations of the leader can be decomposed into temporal Fourier components

30 Often, the variable s is used in the control theory literature. However, in order to avoid confusion

with the gap variable s and consistent with other locations in this chapter, we name the complex

growth rate λ .
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û0eiωt , we can set λ = iω resulting in the stationary transfer function

G(iω) =
iω fl + fs

−ω2 − iω fv + fs

. (16.71)

For each harmonic component of the leader’s oscillation, the next follower responds

• with a phase shift arctan [Im(G(iω))/Re(G(iω))],
• and a growth factor |G(iω)| where

|G(iω)|2 = f 2
s + f 2

l ω2

( fs −ω2)2 + f 2
v ω2

. (16.72)

For ω → 0 (oscillations with durations tending to infinity), we have G(iω)→ 1, i.e.,

the phase shift tends to zero and the growth factor to unity. This is to be expected in

view of vehicle conservation and finite follower response times.

In order to investigate string instability of infinite platoons, we determine the

conditions for which at least one frequency mode has a growth factor exceeding

unity, i.e., we look for the maximum of |G(iω)|2. A necessary condition for a maxi-

mum (which we will call a “resonance condition”) is given by setting the derivative

of |G(iω)|2 with respect to ω2 equal to zero resulting, after a lengthy calculation, to

ω2
res =

fs

f 2
l

(

− fs +
√

f 2
s + f 2

l ( f 2
l − f 2

v +2 fs)

)

. (16.73)

This has several consequences:

• A maximum of |G| in ω2 > 0 only exists if f 2
l − f 2

v + 2 fs ≥ 0, i.e., the infinite

platoon is string unstable or neutrally stable (otherwise, ωres is imaginary).31

• At string instability, f 2
l − f 2

v + 2 fs > 0, one can show that (16.73) corresponds

to a unique maximum of the growth factor |Gres|= |G(iωres)|> 1. Furthermore,

both the growth factor and the resonance frequency of the fastest growing mode

increase strictly monotonously with f 2
l − f 2

v +2 fs.

• At neutral stability, the resonance frequency ωres of the maximum growth tends

to zero justifying the ansatz (16.50) made earlier for the infinite system.32

In summary, long-wavelength perturbations decay from follower to follower if 2 fs−
f 2
v + f 2

l < 0 which is precisely the condition (16.60) for string stability:

An infinite homogeneous vehicle platoon is asymptotically string stable if all

oscillations decay when propagating backwards from vehicle to vehicle.

31 This means that there is no horizontal tangent in ω2. However, in ω , there is a horizontal tangent

corresponding to a maximum |Gres|= 1 at ω = 0.
32 Here, we take the limit ω2 → 0 while in (16.50), we assumed the wavenumber k → 0. However,

for a finite propagation velocity, these two limits are interchangeable.
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This is plausible since any temporary perturbation (as required by the defini-

tion of string instability) can be decomposed into Fourier components, and the de-

phasing of the components when going from follower to follower will lead to per-

manent fluctuations unless the components decay to zero for j → ∞. In this sense,

the transfer function (Laplace) ansatz leads to the same string stability criterion as

the wave ansatz.

Heterogeneous strings. Without multi-anticipation (i.e., looking only at the im-

mediate leader), the transfer function (16.70) exclusively depends on the model pa-

rameters of the considered follower, irrespective of the composition of the leaders

and further followers. This makes it easy to define the strict and head-to-tail string

stability for such car-following models.

The strict string stability is satisfied if every single follower has a growth factor

of at most one for all frequencies ω ,

|G j(iω)| ≤ 1 ∀ω ≥ 0, j = 1, ...,n, (16.74)

where G j(λ ) is the transfer function (16.70) for the sensitivities f js, f jv, and f jl

corresponding to the model and parameters of follower j for a given steady state

(se,ve).
33

For formulating the head-to-tail string stability, we first define the head-to-tail

transfer function as

Gn1(λ ) =
ûn

û0
=

n

∏
j=1

G j(λ ). (16.75)

A finite heterogeneous platoon satisfies weak or head-to-tail string stability is

|Gn1(iω)| ≤ 1 ∀ω ≥ 0. (16.76)

Assuming that the first instability arises at ω2 → 0 in the heterogeneous case as

well, we can evaluate head-to-tail stability according to

33 Notice that even different models of the form (11.3), (11.6) are allowed, e.g., a mixture of

human-driven and automated vehicles with their respective models.
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0 ≥ d

dω2

(

∏
j

|G j(iω)|2
)

ω=0

=
d

dω2
ln

(

∏
j

|G j(iω)|2
)

ω=0

=
d

dω2

(

∑
j

ln |G j(iω)|2
)

ω=0

= ∑
j

1

|G j(0)|2
d

dω2
|G j(iω)|2ω=0

= ∑
j

(

1

f 2
js

)

(

f 2
jl − f 2

jv +2 f js

)

,

where we have made use of the strict monotonicity of the logarithm function and

that |G j(iω)|2 → 1 for ω → 0. This means that a heterogeneous platoon is long-

wavelength head-to-tail string stable if the arithmetic average of the individual string

instability criteria f 2
jl − f 2

jv +2 f js weighted with 1/ f 2
js is nonpositive. However, this

popular formula is only a necessary, not a sufficient condition for head-to-tail string

stability because, for some configurations including string stable and string unsta-

ble followers, the first instability in the heterogeneous platoon may arise at finite

frequencies. Then, we need to evaluate (16.76) which is exact.

Obviously, for homogeneous platoons, the head-to-tail and strict string stability

criteria coincide and are given by the conventional string stability criterion (16.60).

Explicit time delays and lower-level control. Presently, most semi-automated

cars with longitudinal adaptive-cruise control (ACC) are not string stable. While

this is irrelevant for low penetration levels as long as they are locally stable, it mat-

ters for larger levels. Since, for physical reasons, a vehicle cannot implement a pre-

scribed acceleration immediately (cf. Sect. 12.5.3 for details), we need to consider

the control path of the vehicle powertrain as well. This means the ACC is composed

of two components,

• the commanded acceleration given by the higher-level controller, typically a car-

following model with transfer function G(λ ),
• the mapping of the commanded to the physical acceleration given by a lower-

level controller with transfer function H(λ ).

In the simplest case, the lower-level controller is modeled by a first-order lag ac-

cording to

daphys

dt
=

acmd(t)−aphys(t)

τa

, H(λ ) = H1(λ ) =
1

τaλ +1
,

where H1(λ ) is the transfer function of this “PT1 element”. Alternatively or addi-

tionally, one can also model an explicit reaction time delay
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daphys

dt
= acmd(t − τd), H(λ ) = H2(λ ) = e−τdλ ,

or combine both elements (cf. Eq. (12.41))

daphys

dt
=

acmd(t − τd)−aphys(t − τd)

τa

, H(λ ) = H1(λ )H2(λ ).

The total transfer function of an ACC controller with a car-following model, a PT1

element and a delay element as vehicle control path is then given by

GACC(λ ) = G(λ )H(λ ). (16.77)

This use case demonstrates the strength of the transfer function approach: the gen-

eral string stability criteria (16.74) and (16.76) remain valid, just the evaluation in

terms of fs, fv, fl , τa and τd becomes more involved. In particular, for explicit de-

lays τd > 0, the first instability often arises at a finite frequency. This is similar to

the situation for local instabilities, cf. Fig. 16.7.

16.4.4 Application to Specific Car-Following Models

In the following, we apply the general stability criteria to some of the car-following

models presented in the Chapters 11 to 13.

Optimal Velocity Model and extensions. We analyze the Full Velocity Difference

Model (FVDM) presented in Section 11.8 which is a generalization of the Optimal

Velocity Model (OVM). Its acceleration function f̃ (s,v,∆v) = (vopt(s)−v)/τ−γ∆v

is of the form f̃ (s,v,∆v), so Eq. (16.59) is the suitable criterion for string stability.

With f̃v =−1/τ and f̃∆v =−γ , we obtain

v′e(s)≤
1

2τ
+ γ . (16.78)

For bound and congested traffic, the left-hand side v′e(s) is of the order of the inverse

of the time gap. Specifically, for the optimal-velocity relation (11.24), it is directly

given by the inverse 1/T of the desired time gap T .

Traffic flow modeled with the OVM (γ=0) is only string stable if τ < 1
2
v′e(s), i.e.,

the speed adaptation time τ must be smaller than half the time gap of the order of

1-2 s. Since this implies unrealistically agile drivers and unphysically high accel-

erations, the OVM cannot describe realistic driving behavior. The speed difference

sensitivity γ of the FVDM partially resolves this problem since sensitivities γ of the

order of 1s−1 are realistic in car-following mode if speed differences are not too

large. However, as discussed in Section 11.8, the FVDM is not complete since the

sensitivity to speed differences does not tend do zero when gaps tend to infinity.
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Newell’s model. Newell’s model (11.28) is formulated in terms of an iterated cou-

pled map, so the results of Section 16.4.1 cannot be applied directly. Proceeding

as in this section, the resulting solvability condition for the growth rate λ contains

algebraic terms but also exponentials eλ∆ t and, therefore, cannot be solved analyt-

ically.34 As a consequence, no compact analytic stability criterion can be derived.

Moreover, in contrast to models formulated as differential equations but similarly to

time-delay differential equations, the first instability may be of a short-wavelength

type.

If one assumes a priori that short-wavelength instabilities are not relevant, it

is a good approximation to replace difference quotients by time derivatives using

Eq. (11.13). Thus, Newell’s speed update rule v j(t + T ) = ve(s j(t)) can approxi-

mately be formulated by the time-continuous acceleration equation

f Newell(s,v) =
ve(s)− v

T
. (16.79)

It is identical to the OVM if one identifies the speed adaptation time τ with the

update (reaction) time T . We conclude that Newell’s model is stable with respect to

long-wavelength string instabilities if

v′e(s)≤
1

2T
. (16.80)

Gipps’ model. For reference, Gipps’ model (12.9) has the acceleration equation

f (s,v,vl) = min

(

afree(v),
vsafe(s,vl)− v

τ

)

with a monotonously decreasing free-flow acceleration afree(v) and the safe speed

(making the usual assumption θ = τ/2 for the safety time cushion)

vsafe(v,vl ,s) =−bτ +
√

b2τ2 +b
[

2(s− s0)− vτ + v2
l /bl

]

.

For free flow, the steady state is at v0 with v f = a′free(v0)< 0 and v′e(s) = fs = fl = 0.

Hence, the stability criterion (16.58), 0 < 0.5 fv, is always satisfied.

For congested flow, we assume that the minimum leading deceleration bl satis-

fies (12.21) because the model does not give plausible results, otherwise. Under this

conditions, the steady-state gap se(v), Eq. (12.17), is strictly monotonously increas-

ing within its application range v < v0 resulting in the gradient

v′e(s) =
1

s′e(v)
=

1

1.5τ + ve(s)
b

(

1− b
bl

) > 0 .

The sensitivities needed for the stability criterion (16.58) are

34 The equation for λ is of a similar form as the condition (16.32) for local instability of time-delay

differential equations.
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fv =−ve +1.5bτ

τ(ve +bτ)
, fl =

b

bl

ve

τ(ve +bτ)
,

and the model is string stable according to (16.58) if

v′e(s)≤

(

2+ b
bl

)

ve +3bτ

2τ(ve +bτ)
. (16.81)

For b = bl , this simplifies to
2

3τ
≤ 3

2τ

which, obviously, is always satisfied. For bl > b, the drivers get more conservative

(because they assume that the leader can brake harder) and the stability condition is

satisfied even with a greater margin. If, however, Condition (12.21) for bl tends to

its limits, the denominator of v′e(s) for ve → v0 tends to zero, the gradient v′e(s) to

infinity and the stability criterion is violated (cf. Fig. 16.10).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  10  20  30  40  50  60

S
pe

ed
 [m

/s
]

Steady-state gap [m]

θ=τ/2=0.60 s, bl=b=1.5 m/s2

θ=τ/2=0.60 s, bl=2.0 m/s2

θ=τ/2=0.60 s, bl=1.4 m/s2

Simplified Gipps
v0

Fig. 16.10 Steady-state speed ve(s) for different variants and parameterizations of the Gipps

model. The parameters not given in the plot are the highway parameters of Table 12.1 (v0 =
120km/h, s0 = 3m, τ = 1.2s, and a = b = 1.5m/s2).

In summary, as expected, the stability condition depends essentially on the ratio

b/bl . If b/bl ≤ 1, congested flow is always stable. However, if bl is only somewhat

smaller than b, string instability sets in near v = v0, particularly for high desired

speeds. Finally (not shown but the derivation is straightforward), congested flow

without a safety cushion (θ = 0), is always string stable if b/bl < 1, marginally

stable if b/bl = 1, or unstable if b/bl > 1.

Simplified Gipps’ model. The simplified Gipps’ model has the same general struc-

ture (12.9) as the original model but the safe speed (12.16) does not depend on the

actual speed and is given by vsafe(s,vl) =−bτ +
√

b2τ2 + v2
l +2b(s− s0) .
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For free traffic at v0, we have v′e(s) = 0, fv = −1/τ and fl = 0 and the string

stability criterion (16.58), v′e ≤ ( fl − fv)/2 or 0 ≤ 1/τ , is satisfied.

For interacting or congested traffic at the homogeneous steady state, we have v =
vsafe < v0, the microscopic fundamental diagram ve(s) = max(0,(s−s0)/τ), and the

gradient v′e(s) and the sensitivities needed for the criterion (16.58) and for (16.47)

evaluate to

v′e(s) =
1

τ
, fs =

b

τ(bτ + ve)
, fv =−1

τ
, fl =

ve

τ(bτ + ve)
(16.82)

resulting in the string stability condition

1

τ
≤ 1

2τ

(

1+
ve

ve +bτ

)

⇒ bτ ≤ 0 . (16.83)

Since both the driver’s braking deceleration b and the response time τ are strictly

positive, this is never satisfied, i.e., congested traffic represented by this model is

always unstable. However, the instabilities are always of the convective type (cf.

Section 16.6). Moreover, for reasonable values of the deceleration parameter b, the

maximum growth rate σ(k) according to (16.48) is of the order of one hour and

the perturbations need several kilometers of propagation to grow significantly (cf.

Fig. 12.5). In many cases, the critical road sections are shorter, so the perturbations

leave these sections before growing into fully developed traffic waves. As a result,

the model is de facto marginally stable if bτ ≪ ve which is satisfied unless traffic

flow is nearly stopped.35

Intelligent Driver Model. The IDM acceleration function is of the type ã(s,v,∆v).
Since the partial derivative f̃v with respect to the vehicle speed would result in a

markedly longer analytic expression than the derivative with respect to the gap s,

we make use of relation (16.20) and set f̃v =− f̃s/v′e(se). Then, Eq. (16.59) reads

v′e(se)≤
f̃s

2v′e(se)
− f̃∆v. (16.84)

With the partial derivatives

f̃ IDM
s =

2a(s0 + veT )2

s3
e

, f̃ IDM
∆v =−

√

a

b

(

(s0 + veT )ve

s2
e

)

, (16.85)

we obtain the string stability criterion (Fig. 16.11)

(v′e(se))
2 ≤ a(s0 + veT )

s2
e

[

s0 + veT

se

+
vev′e(se)√

ab

]

, (16.86)

where the IDM steady-state gap (12.29) is given by se(v)= (s0+vT )/
√

1− (v/v0)δ .

For reference and for using (16.60) and (16.61), we also give the partial derivative

35 For ve = 0 and s ≤ s0, traffic flow restabilizes.
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of the IDM acceleration with respect to the speed, and the partial derivatives of the

IDM in the formulation f (s,v,vl). For a later use in the multi-anticipative IDM, we

have split fv and f̃v into a free and interacting contribution:

f̃ IDM
v = f̃ IDM,free

v + f̃ IDM,int
v , (16.87)

f̃ IDM,free
v = −aδvδ−1

e

vδ
0

, f̃ IDM,int
v =

−2aT (s0 + veT )

s2
e

, (16.88)

f IDM,free
v = f̃ IDM,free

v , f IDM,int
v = f̃ IDM,int

v + f̃ IDM
∆v , (16.89)

f IDM
s = f̃ IDM

s , f IDM
l =− f̃ IDM

∆v . (16.90)

Condition (16.86) reflects the three influencing factors for string stability discussed

in Section 16.4.1 on page 370:

• The tendency to instability increases with the sensitivity v′e(s) to changes of the

gap fueling the feedback mechanism.

• The tendency to instability decreases with the driver’s agility characterized by

the acceleration parameter a.

• And it decreases with decreasing comfortable deceleration b, i.e., with increasing

level of anticipation.

Notice that v′e(se) ≈ 1/T for v ≪ v0, so the desired time gap T is the main influ-

encing factor to the gap sensitivity (besides the actual traffic state): Lower values

of T lead to higher sensitivities v′e(se) and to a higher tendency to instabilities. In

agreement with common sense, traffic flow becomes more unstable if the time gaps

in car-following mode are comparatively short.36

For the limiting case ve → 0, or equivalently, se → s0 and v′e(s0) = 1/T , we obtain

the simple explicit stability condition

a ≥ s0

T 2
. (16.91)

If the stability condition (16.91) is satisfied but traffic flow is string unstable for

congested traffic of finite steady-state speed ve, one speaks of restabilization. In

this case, mildly congested traffic resulting from comparatively small bottlenecks is

unstable while nearly standing traffic behind severe bottlenecks is stable, creeping

slowly. This will be discussed in Section 18.2.

Optimal Velocity Model with impatient followers. Sometimes, drivers are urged

from behind by light and horn signals from impatient followers. To model this in the

simplest possible way, the OVM (11.21) is first separated into a free and interacting

force,

dv

dt
=

vopt(s)− v

τ
=

v0 − v

τ
+

vopt(s)− v0

τ
= f free(v)+ f int(s,v), (16.92)

36 On the other hand, short gaps lead to a higher dynamic capacity, see Section 12.3.6.
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Fig. 16.11 String instability of the IDM visualized by the reaction of a sequence of vehicles driving

in steady-state equilibrium far below the desired speed (v0 = 120km/h) behind a leading vehicle

whose driver reduces his or her speed from 60 km/h to 40 km/h. Shown is the first vehicle (leader)

and the 10th, 20th, 40th, 60th, and 80th vehicle. Left: Traffic flow is string stable (T = 1s, s0 = 2m,

a= b = 2m/s2). Right: Traffic flow becomes unstable by reducing the IDM acceleration parameter

from a = 2m/s2 to a = 0.6m/s2.

and then augmented with a “pushing” force from the follower of the subject vehicle

corresponding to its interaction force but reversed in sign and weakened by a factor

λ < 1,

dv j

dt
=

v0 − v

τ
+

vopt(x j−1 − x j)− v0

τ
−λ

vopt(x j − x j+1)− v0

τ
. (16.93)

In the special case λ = 0, this model reverts to the OVM while, for λ = 1, we have

momentum conservation of the interactions. The general steady state is given by

ve(s) = (1− λ )vopt(s)+ λv0. The sensitivities of the general linearization (16.64)

are given by

fv0 = fv =−1

τ
,

fv1 = fv,−1 = 0,

fs1 = fs =
v′opt(∆xe)

τ
,

fs,−1 = λ
v′opt(∆xe)

τ

resulting in the Taylor coefficients (16.68)

p0 =
1

τ
, p1 = 0, q1 =

i(1−λ )v′opt(∆xe)

τ
, q2 =

(1+λ )v′opt(∆xe)

2τ
,

and, with (16.55), to the long-wavelength string stability criterion
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v′opt(s)≤
1+λ

2τ(1−λ )2
. (16.94)

Notice that, for the special case of no impatient followers (λ = 0), this condition

reverts to the normal OVM string stability condition (16.78). Remarkably, the ef-

fect of impatient followers suppresses string instability. However, this model is not

suitable for very congested or standing traffic (cf. Problem 16.5).

Multi-anticipative IDM. We consider the multi-anticipative extension (13.14) of

the IDM, i.e., the Human-Driver Model (HDM) without temporal anticipation and

estimation errors. In this model, the interaction forces of all M leaders are added

according to

dv j

dt
= f free(v j)+

M

∑
m=1

f int(x j−m − x j,v j,v j−m) (16.95)

with

f free(v j) = a

(

1−
(

v j

v0

)δ
)

, f int(·) =





s0 + v jT +
v j(v j−v j−m)

2
√

ab

x j−m − x j





2

. (16.96)

Without loss of generality, we consider a vehicle length lveh = 0, so, in steady state

(ve,se(ve)), we have x j−m − x j = mse. For nonzero vehicle length, this relation re-

mains unchanged if we assume that the independent space variable of the mth leader

is the sum of all gaps instead of x j−m − x j which is consistent with Eq. (13.11).

This means that, in steady state, the interacting forces decrease with 1/m2 and

the steady state is given by

se(v) =C2sIDM
e (v), (16.97)

where

Cn =
M

∑
m=1

1

mn
. (16.98)

Since, according to (12.29), the IDM steady-state gap sIDM
e (v) = (s0 + vT )(1 −

(v/v0)
δ )−1/2, the multi-anticipative IDM has the same microscopic fundamental

diagram (steady-state relation) as the original IDM when setting

smulti
0 = s0/C2, T multi = T/C2. (16.99)

The fact that the steady-state interactions decrease with 1/m2 directly leads to fol-

lowing multi-anticipative sensitivities of the linearized model,

fsm =
1

m3
f IDM
s , fvm =

1

m2
f IDM
l , m = 1, . . . ,M (16.100)

and to

fv0 = fv = f IDM,free
v +C2 f IDM,int

v (16.101)
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where f IDM
v , f IDM

s , and f IDM
l are given by (16.89) and (16.90). This leads to the

same expression for the growth rate as (16.47) with the general functions (16.67)

given by

p(k) =− f IDM
v − f IDM

l

M

∑
m=1

e−imk

m2
,

q(k) = f IDM
s

M

∑
m=1

1− e−imk

m3
.

(16.102)

Hence, the Taylor coefficients (16.68) to determine the analytic stability crite-

rion (16.55) are

p0 =− f IDM,free
v −C2 f IDM,int

v −C2 f IDM
l , p1 = iC1 f IDM

l ,

q1 = iC2 f IDM
s , q2 =

C1

2
f IDM
s ,

(16.103)

with C1 and C2 given by (16.98).
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Fig. 16.12 Linear growth rate of the more unstable branch of perturbations (16.47) of a steady

state corresponding to congested traffic (ve = 48km/h) for the multi-anticipative IDM with M = 1

(normal IDM), 2, 3, and 4 leaders as a function of the scaled wave number (phase shift) k for the

IDM acceleration parameter a = 0.8m/s2. Also given are the values of the second-order Taylor co-

efficient σ ′′(0), Eq. (16.54) with (16.103) (a positive value means string instability). The remaining

IDM parameters are given in the caption of Fig. 16.9.

Remarkably, the expansion terms of the multi-anticipative IDM growth rate differ

from that of the single-leader IDM just by factors 1, C1, or C2 and by the steady-

state gap (16.97) to be used when calculating sensitivities fs, fv and fl which is

larger than that of the single-leader IDM by a factor of C2.

Figure 16.12 shows the resulting growth rate σ(k), Eq. (16.48), for a parame-

terization leading to the same fundamental diagram as in Fig. 16.9, i.e., evaluating

everything with the minimum gap smulti
0 = s0/C2 and T multi = T/C2. In order to show

the stabilizing effect, a low acceleration parameter a = 0.8m/s2 is chosen such that
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the M = 1 curve corresponds to the most unstable curve in Fig. 16.9. While this fig-

ure clearly shows a stabilizing effect of multi-anticipation, its true power comes into

play when considering finite reaction times since multi-anticipation simply “buys

time” to respond.

16.5 Flow Stability of Macroscopic Models

For investigating macroscopic flow instability, i.e., the equivalent of the microscopic

string instability, we start from the general acceleration equation (10.1) of second-

order macroscopic models combined with the continuity equation (10.10) for ho-

mogeneous road sections,37 including possible diffusion terms.

16.5.1 Generalized Linear Formulation of Second-Order Models

We rewrite the acceleration equation such that all partial derivatives and nonlocal-

ities contributing to actual accelerations appear explicitly as independent variables

of the acceleration function. Together with the continuity equation, this gives

∂ρ

∂ t
+

∂ (ρV )

∂x
= D

∂ 2ρ

∂x2
, (16.104)

∂V

∂ t
+V

∂V

∂x
= A(ρ ,V,ρa,Va,ρx,Vx,ρxx,Vxx) . (16.105)

The partial derivatives and nonlocalities of the density field are given by

ρx =
∂ρ(x, t)

∂x
, ρxx =

∂ 2ρ(x, t)

∂x2
, ρa(x, t) = ρ(xa, t) with xa > x. (16.106)

The derivatives Vx, Vxx and nonlocalities Va of the speed field are defined in analogy.

As for the microscopic models, we expand Eqs. (16.104) and (16.105) around

the steady-state solution (ρe,Ve). The steady-state condition itself defines the fun-

damental speed-density relation Ve =Ve(ρ) by

A(ρ ,Ve(ρ),ρ ,Ve(ρ),0,0,0,0) = 0. (16.107)

Moving along the one-dimensional space of steady-states,

dA =
(

Aρ +Aρa

)

dρ +(AV +AVa)
dVe

dρ
dρ = 0, (16.108)

37 Otherwise, Fourier modes cannot be used and the analysis becomes more complicated.
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we obtain the following relation between the partial derivatives of the acceleration

function:
dVe(ρ)

dρ
=V ′

e =−Aρ +Aρa

Av +AVa

. (16.109)

Here, the partial derivatives of the acceleration function (including these appearing

in Eq. (16.114) below) are given by

Aρ =
∂A

∂ρ

∣

∣

∣

∣

e

, Aρa =
∂A

∂ρa

∣

∣

∣

∣

e

, Aρx =
∂A

∂ρx

∣

∣

∣

∣

e

, Aρxx =
∂A

∂ρxx

∣

∣

∣

∣

e

. (16.110)

The derivatives AV , AVa , AVx , and AVxx are defined in analogy. The subscript “e”

denotes that the functions are evaluated at the steady-state point (ρe,Ve(ρe)). Lin-

earizing Eqs. (16.104) and (16.105) using the ansatz

ρ(x, t) = ρe + ρ̃(x, t), (16.111)

V (x, t) =Ve +Ṽ (x, t), (16.112)

leads to the linear partial (and possibly nonlocal) differential equations

∂ ρ̃

∂ t
=−ρe

∂Ṽ

∂x
−Ve

∂ ρ̃

∂x
+D

∂ 2ρ̃

∂x2
, (16.113)

∂Ṽ

∂ t
=−Ve

∂Ṽ

∂x
+Aρ ρ̃ +AV Ṽ +Aρa ρ̃a +AVaṼa

+Aρx

∂ ρ̃

∂x
+AVx

∂Ṽ

∂x
+Aρxx

∂ 2ρ̃

∂x2
+AVxx

∂ 2Ṽ

∂x2
(16.114)

which ρ̃a(x, t) = ρ̃(xa, t) and Ṽa(x, t) = Ṽ (xa, t).

16.5.2 Linear Stability Analysis

The general ansatz to solve this system of equations consists of linear waves

(Fourier modes) of wave number k and a growth rate λ (k),

(

ρ̃k(x, t)
Ṽk(x, t)

)

∝

(

ρ̂
V̂

)

eλ t−ikx =

(

ρ̂
V̂

)

e(σ+iω)t−ikx . (16.115)

In contrast to the microscopic ansatz (16.39), the macroscopic Fourier modes are

defined in the stationary (road) system. Furthermore, the quantity k is dimensional

with the unit m−1. Specifically:

• The wavelength is given by 2π/k, i.e., k is consistent with the physical defini-

tion of a wave number. This has to be contrasted with the physical wavelength

2π(se + l)/k of microscopic models.

• With I lanes, a wave contains Iρe2π/k vehicles.
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• The points of constant phase φ = ωt − kx (the waves), move with the velocity

c̃(k) = ω/k in the stationary system. This has to be contrasted with the physical

propagation velocity c̃mic(k) = ve(se) + (se + l)ω
k

of microscopic waves in the

stationary system.

Similarly to the analysis of car-following models, inserting the ansatz (16.115) into

Eqs. (16.113) and (16.114) results in an algebraic linear system of equations for the

amplitudes ρ̂ and V̂ of the density and speed oscillations, respectively:

λρ̂ = (ikVe −Dk2)ρ̂ + ikρeV̂,

λV̂ =
(

Aρ +Aρae−iksa − ikAρx − k2Aρxx

)

ρ̂

+
(

ikVe +AV +AVa e−iksa − ikAVx − k2AVxx

)

V̂.

Here, sa = xa − x is the anticipation distance of nonlocal models.

As in the analysis of the car-following models, the solvability condition for this

homogeneous linear system leads to a quadratic equation of the form (16.44) for λ .

The long-wavelength expansion of the more unstable branch (given by Eq. (16.47)

with the negative sign of the square root) around k = 0 proceeds in exact analogy

to the analysis of car-following models in Section 16.4.1. Again, the result takes on

the general form (16.53) but now with the macroscopic expansion coefficients

p0 =−(AV +AVa),

p1 = i(AVx + saAVa −2Ve),

q1 = iVe(AV +AVa)− iρe(Aρ +Aρa) =−iQ′
e p0,

q2 =Ve(AVx + saAVa)−ρe(Aρx + saAρa)−V 2
e −D(AV +Ava).

(16.116)

To arrive at the second equality sign of the expression for q1, we have applied

Eq. (16.109):

q1 =−iVe p0 + iρe p0

Aρ +Aρa

AV +AVa

=−ip0(Ve +ρeV
′
e) =−iQ′

e p0. (16.117)

In first order of the wave number k, the general long-wavelength expansion (16.53)

yields a purely imaginary contribution and results in the phase velocity

c̃(k) =
ω

k
=− q1

p0
+O(k2) = Q′

e +O(k2). (16.118)

As in the LWR models, the propagation speed of waves of low wave number (k ≪
π) is given by the gradient Q′

e of the fundamental diagram. In contrast to these

models where c̃ = Q′
e is valid for any perturbation, the wave velocity of second-

order macroscopic models changes with the wavelength and c̃ = limk→0 c̃(k) = Q′
e

is only a linear and long-wavelength approximation. In Problem 16.2 we will show

that expression (16.118) for the physical phase velocity in the road-based system

also applies to the considered car-following models.
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As in the microscopic analysis, the second-order term of Eq. (16.53) provid-

ing the stability properties is purely real and the string stability criterion is given

by (16.55). Inserting (16.117), q1 =−iQ′
e p0, into (16.55) results in the simple, still

general macroscopic flow stability condition

(Q′
e)

2 − ip1Q′
e −q2 ≤ 0. (16.119)

Notice that p0 dropped out completely in this relation.

Local models. Local macroscopic models are defined by Aρa = AVa = 0. Inserting

the macroscopic expansion coefficients (16.116) for p1 and q2 and replacing Q′
e =

Ve +ρeV
′
e , we obtain the stability condition

(ρeV
′
e)

2 ≤−ρe

(

V ′
eAVx +Aρx

)

−DAV
Flow stability for

local macroscopic models.
(16.120)

With (16.109), this condition can also be formulated purely in terms of derivatives

of the acceleration function,

(

ρeAρ

Av

)2

≤ ρeAρ Avx

Av

−ρeAρx −DAV . (16.121)

We emphasize that this criterion does not depend on AVxx or Aρxx . So, contrary to

intuition, flow stability is not enhanced by diffusion terms in the equation for the

speed field. It is enhanced, however, by the diffusion term proportional to D in the

density equation. Remarkably, without diffusion, the form (16.120) does also not

depend directly on the acceleration sensitivities Aρ and Av with respect to density

or speed, respectively, since they only appear in the combination V ′
e = −Aρ/Av.

If the macroscopic model can be written in the form (10.11), i.e., the acceleration

function does not contain speed gradients, and all other gradients can be written in

terms of a complete differential − 1
ρ ∂P/∂x of a traffic pressure P(ρ(x, t)) depending

on density, only, Eq. (16.120) assumes the form

(ρeV
′
e)

2 ≤ P′
e −DAV where P′

e = P′(ρe). (16.122)

Nonlocal models. Since the nonlocal terms containing ρa(x, t) = ρ(x + sa, t) or

Va(x, t) = V (x+ sa, t) constitute anticipative elements (sa = xa − x > 0), they play

the role of the gradient terms of the local models and it does not make sense to

include the latter in nonlocal models: After all, nonlocal models have been pro-

posed to overcome some conceptual and numerical problems that are inherent to

the gradients of local models.38 Therefore, we can set Aρx = 0, AVx = 0, and D = 0.

However, this applies to gradients related to accelerations of single vehicles, only.

Gradients arising from kinematic reasons (the advective term V ∂V
∂x

), or representing

38 Diffusion terms imply infinite speeds. Furthermore, in the presence of speed gradients, negative

speeds cannot be excluded. Moreover, local models are numerically more unstable than gradient-

free nonlocal models.
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purely statistical effects (pressure term −1/ρ ∂P
∂x

, cf. Section 10.3.4) are retained.

Consequently, the nonlocal models considered in the following (including the GKT

model) have acceleration equations of the form

∂V

∂ t
+V

∂V

∂x
+

1

ρ

∂P(ρ)

∂x
= A(ρ ,V,ρa,Va) . (16.123)

Evaluating the general stability condition (16.119) for this model class leads to

(ρeV
′
e)

2 ≤ P′
e −ρesa

(

V ′
eAVa +Aρa

) Stability condition for

nonlocal macro-models.
(16.124)

Discussion. As for the microscopic models, macroscopic models tend to become

more instable with increasing gap sensitivity |V ′
e(ρ)| representing the degree of in-

teraction between drivers, i.e., completely free traffic is never unstable. Furthermore,

like in car-following models, anticipation in the form of gradients (AVx > 0, Aρx < 0)

or nonlocalities (AVa > 0, Aρa < 0) enhance stability. By comparing the stability con-

ditions (16.124) and (16.120) it becomes evident that the nonlocalities Aρa , AVa of

the nonlocal models directly correspond to the gradients Aρx , AVx of the local mod-

els.

In contrast to microscopic models, the speed sensitivity AV alone does not in-

fluence stability since it appears only in combination with the density diffusion D

which is zero, in most macroscopic models. We conclude:

Without gradients or nonlocalities, macroscopic models are unconditionally

unstable.

Furthermore, linear stability does not depend on diffusion terms characterized by

Aρxx and AVxx but only on density diffusion characterized by the coefficient D. Never-

theless, diffusion terms in the speed equation tend to stabilize perturbations of higher

amplitude and/or frequency that are outside the limits of this linear long-wavelength

analysis. Therefore, such terms are included into some local macroscopic models,

e.g., the Kerner-Konhäuser model (10.21).

16.5.3 Application to Specific Macroscopic Models

In the following, we apply the general criteria to three models of Chapter 10, Payne’s

model, Kerner-Konhäuser model, and the GKT model. Furthermore, the investigate

a modified Aw-Rascle model

Payne’s model. The acceleration function of Payne’s model (10.18) is given by

A(x, t) =
Ve(ρ)−V

τ
+

V ′
e(ρ)

2ρτ

∂ρ

∂x
.
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With the partial derivatives Aρx = V ′
e/(2ρτ), AVx = 0 and D = 0, the macroscopic

stability condition (16.120) for local models gives

ρV ′
e

2 ≤−Aρx =− V ′
e

2ρτ

and (watch the signs keeping in mind that V ′
e =V ′

e(ρ)< 0)

−V ′
e(ρ) = |V ′

e(ρ)| ≤
1

2ρ2τ
. (16.125)

Again, stability of traffic flow increases with increasing agility of the drivers (de-

creasing speed adaptation time τ), and decreasing sensitivity |V ′
e(ρ)| to density

changes which is the macroscopic equivalent to the microscopic gap sensitivity

v′e(s).
Notice that this result could also be obtained directly from the formulation of

Payne’s model with a pressure gradient, dV
dt

= Ve−V
τ − 1

ρ
∂P
∂x

with P = −Ve/(2ρ).

Applying (16.122) gives (ρeV
′
e)

2 ≤ P′
e =−V ′

e/(2ρτ)

LWR models. In the limiting case τ → 0, Payne’s model tends to the LWR model

with diffusion (cf. Section 10.4.1). According to Eq. (16.125), this model is uncon-

ditionally stable. In contrast, the stability properties of the classical LWR model

without diffusion terms are undefined. However, since even the smallest finite dif-

fusion makes the model unconditionally stable and integration schemes typically

introduce a finite amount of numerical diffusion (cf. Sect. 10.5.7), the LWR models

can be considered as unconditionally stable, for practical purposes.

Kerner-Konhäuser model. For reference, the model formulation (10.22) in terms

of the traffic pressure is given by

∂V

∂ t
+V

∂V

∂x
=

Ve(ρ)−V

τ
− 1

ρ

∂P(ρ)

∂x
+

µ

ρ

∂ 2V

∂x2
, P(ρ) = ρc2

0.

It is convenient to apply the form (16.122) of the stability criterion. With P′(ρ) = c2
0

and D = 0,39 we obtain
(

ρeV
′
e

)2 ≤ P′
e(ρ) = c2

0. (16.126)

As in Payne’s model, flow stability is enhanced by decreasing the sensitivity |V ′
e(ρ)|

to density changes. Furthermore, stability grows with the drivers’ level of antici-

pation which is characterized by the prefactor c2
0 of the traffic pressure.40 We em-

phasize that, at variance with expectations, the model parameter τ representing the

driver’s agility drops out of the stability condition. This makes the model somewhat

counterintuitive.

39 Notice that the speed diffusion AVxx = µ/ρ does not contribute to linear stability.
40 In a statistical interpretation, c2

0 formally denotes the speed variance in analogy to the corre-

sponding term θ = α(ρ)V 2 of the GKT model. However, in the Kerner-Konhäuser model, c2
0 is

usually interpreted as a purely phenomenological anticipation term.
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A modified Aw-Rascle model. For theoretical investigations, the Aw-Rascle model

is often used because it is fully flow conservative. However, it does not describe re-

alistic traffic flow, so some “generalizations” have been proposed, e.g., one with the

acceleration equation
∂V

∂ t
+

(

V − 1

ρT

)

∂V

∂x
= 0. (16.127)

Obviously, this model allows for any two-dimensional combination of ρ and Q =
ρV as a steady state because it contains only gradients. Moreover, its flow stability

is undefined because the relevant stability criterion (16.120) depends on the exis-

tence of a fundamental diagram to form the gradient V ′
e(ρ) = −Aρ/AV . By adding

a relaxation term and writing the acceleration equation term in the form

∂V

∂ t
+V

∂V

∂x
=

1

ρT

∂V

∂x
+

Ve(ρ)−V

τ
,

its stability is defined. With Av =−1/τ , AVx = 1/(ρT ), Aρ =V ′
e(ρ)/τ , and Aρx = 0

and inserting this in (16.120) considering V ′
e(ρ) ≤ 0, we obtain the flow stability

condition

V ′
e(ρe)≥− 1

ρ2
e T

.

Notice that, as in the Kerner-Konhäuser model, the relaxation time τ drops out.

GKT model. In spite of the more complex GKT acceleration function given by

the right-hand side of Eq. (10.25), the partial derivatives necessary for the nonlocal

stability criterion (16.124) can be expressed in a compact form,

Aρa =
∂A

∂ρa

=−2(V0 −Ve)ρmax

τρe(ρmax −ρe)
, (16.128)

Ava =
∂A

∂Va

=
2(V0 −Ve)

τσV (ρe)
√

π
. (16.129)

Here, the speed variance σ2
V (ρ) = α(ρ)V 2

e (ρ) is given by Eq. (10.23). Inserting the

partial derivatives into the stability criterion results in the following condition for

GKT flow stability

(

ρeV
′
e

)2 ≤ P′
e +

2sa(V0 −Ve)

τ

[

ρmax

ρmax −ρe

− ρeV
′
e

σV

√
π

]

(16.130)

where sa = γVeT and P′
e = σ2

V +ρα ′(ρ)V 2
e are taken at steady-state conditions. No-

tice that, in the limit of zero anticipation (γ → 0), the GKT flow stability criterion re-

verts to that for the Kerner-Konhäuser Model but the stability increases for increas-

ing anticipation distance sa = γveT and increasing driver agility 1/τ , in agreement

with the general qualitative discussion on the influencing factors of string stability

in Section 16.4.1 on page 370.

Near the maximum density, we can approximate this GKT stability criterion and

express it in terms of a simple condition for the anticipation factor γ (cf. Prob-
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lem 16.7),

γ >
τ

2T 2ρmaxV0

(

1+(αmaxπ)−1/2
) . (16.131)

This condition makes explicit that, in the GKT model, stability

• increases with γ characterizing the level of anticipation,

• decreases with increasing τ , i.e., reducing the driver’s agility a = V0/tau corre-

sponding to the maximum acceleration in the vehicle reference frame,

• increases with increasing desired time gap T , i.e., reducing the aggressiveness,

• increases with the desired speed V0, i.e., increasing the agility V0/τ ,

• and increases with the sensitivity to speed differences which is characterized by

α−1/2.

Notice that all influencing factors are plausible, i.e., change the stability in the ex-

pected direction.

16.6 Convective Instability and Signal Velocities

In order to arrive at an approximate analytical criterion between convective and ab-

solute instability, we start directly with definition (16.6) and investigate whether an

initial transient and localized perturbation propagates in both directions (absolute in-

stability), or only in one direction (upstream or downstream convective instability).

Since all considerations are based on Eq. (16.44) and this quadratic equation applies

equally to car-following and macroscopic models (cf. Eqs. (16.46) and the solvabil-

ity condition derived from Eq. (16.116), respectively), the analysis to be developed

below applies to macroscopic flow stability as well as to microscopic string stability.

The macroscopic approach allows for a more compact analytical representation, so

we will use it in the following.

We recall that Eq. (16.44) has two solution branches (linear complex dispersion

relations) λ1/2(k) of which one is always decaying. Since we are interested in grow-

ing perturbations, we will consider the more unstable branch, only, by setting

λ (k) =

{

λ1(k) if Re(λ1(k))> Re(λ2(k)),
λ2(k) otherwise.

(16.132)

Generally, the more unstable branch is given by Eq. (16.47) with the negative sign

of the square root.

In contrast to the investigations on the instability threshold, the growth rates will

no longer be expanded around the wave number k = 0 of the firstly unstable pertur-

bation but around the wave number

k0 = argmax
k

(Re λ (k)) (16.133)
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Fig. 16.13 Propagation velocity c̃(k) and group velocity vg(k) for the IDM with acceleration pa-

rameter a = 0.93m/s2. The steady-state speed ve and the other IDM parameters are given in the

caption of Fig. 16.9.

of the fastest growing perturbation. Since this investigation only makes sense if there

is a linear instability at all, the associated maximum growth rate

σ0 = σ(k0) = Re λ (k0) (16.134)

is positive. Due to vehicle conservation, waves of infinite wavelength corresponding

to k = 0 always have a growth rate of zero, so the wave number k0 of the fastest

growing mode is nonzero as well. We emphasize that determining the argument k0

of the fastest growing mode is the only numerical step required in this section.41 The

qualitative picture is exemplified by Fig. 16.9 displaying the growth rate σ(k) =
Reλ (k) for the IDM as a function of the wave number k and the distance from

the linear instability threshold (corresponding to an IDM acceleration parameter

a = 1.10m/s2):

• For reasons of symmetry, not only σ(0) is 0 but also the tangent slope σ ′(0) = 0.

• At the instability threshold, the first unstable mode has a wave number k → 0, so

k0 → 0. Above the linear threshold, k0 grows with increasing distance.

• For reasonable parameter settings, the instability retains its long-wavelength na-

ture also above the threshold. In the example of Fig. 16.9, the wave number k0

of the fastest growing mode at the limit between convective and absolute insta-

bility (corresponding to the middle curve) represents traffic waves of wavelength

(lveh + se)2π/k0 ≈ 1.3km. In other words, each wave contains 2π/k0 ≈ 47 ve-

hicles. Furthermore, although significantly above the threshold, the associated

growth rate σ0 = 0.0017s−1 corresponds to a remarkably slow growth by a fac-

tor of e1 every ten minutes.42

41 The analytic derivation of the resonance frequency (16.73) is of little help here because this

equation determines the oscillation frequency for a maximum growth rate from vehicle to vehicle

for sustained leading vehicle oscillations while here the wave number for a maximum growth

rate Reλ of a spatially infinite harmonic wave field is needed. In spite of the simple appearance

of (16.45) for λ (k), it is extremely cumbersome to calculate analytically.
42 Notice that this is another hint that it may take some time until an initial perturbation develops

to high-amplitude traffic waves, or a traffic breakdown.
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In order to determine the limits of convective instability, we determine the spa-

tiotemporal evolution U(x, t) of the perturbation amplitude, and check whether

it spreads only upstream, only downstream, or in both directions. The amplitude

U(x, t) is defined by the system (16.113), (16.114) of linear partial differential equa-

tions to be solved in the infinitely extended system with the localized initial pertur-

bation (16.3), or the corresponding microscopic linear equations. This initial-value

problem is approximately solved in the following steps:

• The initial perturbation U(x,0) is partitioned into linear waves by Fourier trans-

forming the initial condition with respect to space. Since the initial perturba-

tion is localized within the space available for one vehicle and the interesting

Fourier modes have much greater wavelengths, the integral over x determining

the complex amplitude of the modes (Fourier transform) is the same for all rele-

vant modes, and can be set to unity.

• The Fourier modes are evolved in time by the Eqs. (16.39) or (16.115) for micro-

scopic and macroscopic models, respectively

• In the case of microscopic models, the Fourier modes are transformed in a

fixed system with dimensional space coordinates. In any case, the develop-

ment of the complex speed components of the Fourier modes is now given by

Ṽk(x, t) = eλ t−ikx (cf. Eq. (16.115)).

• Summing over the speed components Ṽk(x, t) of the Fourier modes, i.e., perform-

ing an inverse Fourier transformation, gives the complex perturbation amplitude

Ũ(x, t) =
∫

Ṽk(x, t)dk. Taking the real part finally gives the spatiotemporal evolu-

tion U(x, t) = Re Ũ(x, t).

While the first three steps are straightforward, the last step can only be evaluated

analytically if one expands the complex growth rate to second order around k = k0

and solves the resulting complex Gaussian integral. This rather lengthy calculation

results in (cf. Fig. 16.14)

U(x, t) = Re(Ũ(x, t)), (16.135)

Ũ(x, t) ∝ exp
[

i(k
phys
0 x−ω0t)

]

exp

[(

σ0 −
(

vg − x
t

)2

2(iωkk −σkk)

)

t

]

. (16.136)

The expansion coefficients are summarized in the following table:
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Quantity

in Eq. (16.136)
Microscopic models Macroscopic models

k
phys
0 ρek0 = ρearg max

k
Reλ (k) k0 = arg max

k
Reλ (k)

σ0 Re λ (k0) Re λ (k0)

ω0 veρek0 + Im λ (k0) Im λ (k0)

vg ve + Im λ ′(k0)/ρe Im λ ′(k0)

σkk Re λ ′′(k0)/ρ2
e Re λ ′′(k0),

ωkk Im λ ′′(k0)/ρ2
e Im λ ′′(k0).

As visualized by Fig. 16.14, expression (16.136) represents a localized group of

waves with the following properties:

• Single waves propagate with the phase velocity vφ = c̃(k0) = ω0/k
phys
0 (first fac-

tor of Ũ(x, t)).
• The center of the perturbation propagates with the group velocity vg (second

factor).

• The amplitude at the center of the perturbation grows with the rate σ0.
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Fig. 16.14 Spatiotemporal propagation U(x, t) of a localized perturbation of the steady-state traffic

flow (speed ve = 48km/h) as simulated with the IDM. The parameter settings of the left column

(acceleration parameter a = 1m/s2, further IDM parameters as in Fig. 16.9) correspond to con-

vectively unstable traffic, the right column (a = 0.85m/s2) to absolutely unstable traffic, and the

middle column (a = 0.93m/s2) to the limit between convective and absolute instability. For each

parameter settings, the analytical result Eq. (16.136) (top row) is compared with an IDM simulation

(bottom row).

Figures 16.13 and 16.15 show that phase and group velocity are different from

each other (and also different from the LWR propagation speed c̃ = limk→0 c̃(k)):
Since vg is larger (less negative) than vφ , the waves emerge at the downstream

boundary of the perturbation, propagate through the perturbed region, and vanish
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at the upstream boundary.43 In spite of the many approximations made in deriv-

ing Eq. (16.136), this analytical expression agrees with the simulation result in fine

detail.
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Fig. 16.15 Propagation velocities of linear perturbations as a function of the steady-state density

ρe. Shown are the group velocity vg, the phase velocity vφ and, for comparison, the LWR propa-

gation velocity Q′
e(ρ) for the IDM. In Plot (a), traffic flow at capacity is unstable (stability class 1,

a = 0.8m/s2, the other parameters are as in Fig. 16.9) while, in diagram (b), traffic flow at capacity

is linearly stable (stability class 2, a = 1.1m/s2).

By applying the definition (16.6) of convective instability to the solution (16.136),

we finally arrive at the following analytic criteria for convective instability:

0 < σ0 ≤
v2

g

2D2
, D2 =−σkk

(

1+
ω2

kk

σ2
kk

)

Convective

instability.
(16.137)

The first inequality sign states that traffic flow must be linearly (string or flow) unsta-

ble while the second inequality ensures that the perturbations propagate in only one

direction. Notice that Eq. (16.137) depends only on the square of the group velocity,

so it does not distinguish between upstream and downstream convective instability.

The latter information is directly contained in the analytical solution (16.136): A

steady-state flow satisfying Eq. (16.137) is convectively upstream unstable if vg < 0,

and convectively downstream unstable, otherwise.

Remarkably, the range of growth rates corresponding to convective instability in-

creases with the square of the group velocity vg and with the inverse of the second-

order effective dispersion coefficient D2:44 If vg ≈ 0 (corresponding to the transi-

tion between free and congested traffic or to congested traffic of comparatively low

density, cf. Fig. 16.15(a), the instability is always absolute. For congested traffic

sufficiently far away from the transition point, vg < 0 and the instabilities are nearly

43 This is similar to a group of water waves triggered by a localized perturbation, e.g., by a stone

thrown at the water surface.
44 This dispersion has the same unit, order of magnitude (100m2/s), and effect, as the diffusion

terms of some macroscopic models.
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always of an upstream convective nature. Finally, if the model parameter settings im-

ply linear instabilities on the left-hand side of the fundamental diagram (“dense” but

technically free traffic flow, vg > 0), Eq. (16.137) allows for convective downstream

instabilities, similarly to the original hydrodynamic systems where the concept of

convective instability comes from. However, unlike the upstream type, downstream

convective instabilities are not robust with respect to nonlinear effects: Downstream

propagating growing waves reverse their propagation direction once nonlinearities

kick in so the system effectively becomes absolutely unstable (cf. Fig. 16.5). This

reversal, also called the boomerang effect can also be observed in traffic data (cf.

Fig. 21.4). We conclude that, unlike upstream convective instabilities, downstream

convective instabilities are not relevant for traffic flow dynamics.

Signal velocities. The signal velocities are defined as the slopes of rays x = cst in

spacetime along which the linear amplitude of instabilities triggered by a localized

and instantaneous perturbation at x = t = 0 neither grows nor shrinks. Generally,

there are two such velocities representing the motion of the two boundaries of the

instability region. In Fig. 16.4, these boundaries are indicated by solid black lines

In order to extract the signal velocities from the perturbation field U(x, t), we

consider the amplitude of U(x, t) along rays x = cst and determine cs such that the

growth of the amplitude along this ray is equal to zero. This means, we replace

x = cst in the expression (16.135) for U(x, t) and set the real part of its exponent

equal to zero:

σ0 −Re

(

(vg − cs)
2

2(iωkk −σkk)

)

= σ0 −
(

(vg − cs)
2

2D2

)

= 0.

For σ0 > 0 (i.e., traffic flow is string unstable which we require anyway), this leads

to two signal velocities,

c±s = vg ±
√

2D2σ0. (16.138)

From this relation, we learn the following:

• The center of the region of significantly perturbed traffic flow propagates with

the group velocity.

• The perturbed region grows spatially at a constant rate 2
√

2D2σ0.

• As expected, the spatial growth rate increases with the overall level of instability

σ0 and with the effective dispersion coefficient D2.

• The special case cs = 0 leads us to the threshold condition σ0 = v2
g/(2D2) be-

tween absolute and convective instability which agrees with (16.137).

The latter point indicates that signal velocities are related to convective instability.

Moreover, they provide an intuitive, and yet mathematically stringent, approach to

distinguish between the upstream and downstream types of convective instability:

traffic flow is







absolutely string unstable c−s < 0 < c+s
upstream convectively unstable c−s < 0,c+s < 0

downstream convectively unstable c−s > 0,c+s > 0.
(16.139)
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The upstream type of convective instability (Fig. 16.4 left) is often observed in the

traffic flow context while the downstream type is related to the hydrodynamic con-

text where the very concept of convective instability originates.

16.7 Nonlinear Instability and the Stability Diagram

The analytical investigation of the previous sections refer to small perturbations,

i.e., to linear instability. Few analytical results are available for large-amplitude

perturbations or fully developed traffic waves.45 Instead, one investigates nonlin-

ear effects directly by simulations of well-defined systems that are as simple as

possible. The most popular of such toy systems is a closed single-lane ring road

populated which identical drivers and vehicles.46 In order to avoid finite-size effects,

the system should contain more than 500 vehicles. As a further abstraction, one can

also consider a ring road with a circumference tending to infinity or, equivalently,

an infinitely extended homogeneous road. The only control parameter is the global

(average) density ρe. By simulating the qualitative system dynamics in the full range

[0,ρmax] of possible values for the control parameter, one obtains a stability diagram.

We emphasize that a ring road does not represent a realistic abstraction of real

road networks: Real road networks are open, so the inflow (traffic demand) rather

than the density acts as control parameter. Furthermore, bottlenecks are missing

on the idealized ring road. Nevertheless, their investigation allows us to draw far-

reaching conclusions on more realistic open systems with bottlenecks. A big advan-

tage of stability diagrams derived from ring roads is that they reflect the dynamical

properties of a given model-parameter combination independently of the properties

of the road network, or the traffic state.

To obtain stability diagrams as that of Fig. 16.17(a), (b), or (d), we scan the

whole range of global densities ρe ∈ [0,ρmax]. For a given global density, we simu-

late two scenarios: One is initialized with a very small perturbation, and one with the

maximum possible perturbation. Instead of the “linear” scenario initialized with the

small perturbation, one could also use the analytical results. However, simulating

them represents a good combined test of the simulator code, and of the approxi-

mations and assumptions made during the analytical derivations. For each scenario,

we check whether the initial perturbation dissolves, or evolves into persistent traffic

waves. Generally, the resulting stability diagram is subdivided into the following

regions:

• Absolute stability for global densities ρe below the lower nonlinear threshold ρ1.

45 There is a large body of literature proposing and investigating solitary nonlinear waves which

can be investigated analytically. However, the conditions to derive equations for such waves (e.g.,

a modified Korteweg-de-Vries equation) are extremely restrictive and nearly never satisfied in real

traffic situations.
46 A ring road must not be confused with a roundabout which, in contrast to the former, represents

a comparatively complex network node.
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• Metastability in a range ρ1 ≤ ρe < ρ2 between the lower nonlinear and linear

thresholds. In this range, sufficiently small initial perturbations eventually dis-

solve while higher-amplitude perturbations develop to persistent traffic waves

(Fig. 16.16, see also Fig. 16.8).

• Absolute linear instability in a range ρ2 ≤ ρe < ρcv.

• Convective linear instability in the range ρcv ≤ ρe < ρ3.47

• Convective metastability in the range ρ3 ≤ ρe < ρ4 between the upper linear and

nonlinear density thresholds.

• And absolute instability for ρe ≥ ρ4.

Which subset of the above stability types is actually realized when scanning the

global density depends on the model-parameter combination. Since this determines

the qualitative behavior of congested states in real open road networks (and in partic-

ular whether this behavior is realistic or not), the most relevant subsets are attributed

to stability classes that will be discussed in the next section.
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Fig. 16.16 Metastable traffic flow on a ring road with the global density ρ = 26veh/km for IDM

parameters as in Fig. 16.17(d). Small perturbations dissolve (left) while a larger initial perturbation

develops to a persistent traffic wave propagating around the ring road (right). Notice the different

scales of the z-axes.

16.8 Stability Classes

While the density regions for the different instability types appear (with few excep-

tions) always in the order ρ1 ≤ ρ2 ≤ ρcv ≤ ρ3 ≤ ρ4,48 not all density regions are

realized, in general. Particularly, there may be no restabilization for high densities

47 Strictly speaking, convective instability is only well-defined in an infinite or open system. How-

ever, for practical purposes, the circumference of the ring must be sufficiently large such that no

vehicle drives around the complete ring during the simulation time.
48 For rare combinations of models and parameters, we obtain a region of absolute instability em-

bedded on both sides by regions of convective downstream and upstream instabilities, respectively.
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(Fig. 16.17(a)), no absolute instability (ρ2 = ρcv, Fig. 16.17(a), (b)), or no instability

at all (ρ1 = ρ4 = ρmax). In principle, all ranges apart from the first one (ρ < ρ1) may

vanish independently from each other. It is hard, however, to find model-parameter

combinations showing metastable regimes but no linear instability at any density.

Analyzing real open systems with bottlenecks, it turns out that the qualitative

spatiotemporal behavior, i.e., the set of possible congestion patterns, depends on

only a few combinations of existing regimes. Additionally, the relative position of

the thresholds with respect to the density ρK at capacity (the density where the

maximum flow is observed) plays an essential role. This leads to the definition of

the following stability classes:

Class 1a: When increasing the density, traffic flow becomes linearly unstable for

densities corresponding to dense but technically yet free traffic. Furthermore, it re-

mains unstable for all higher densities: ρ1 ≤ ρ2 < ρK , ρ3 = ρ4 = ρmax. Since the

propagation velocity vg is 0 for a steady-state density ρe ≈ ρK , Equation (16.137)

implies that this class includes density ranges of absolute instability. Typically, the

instability remains absolute up to moderately congested traffic and becomes con-

vective for severe congestions near the maximum density.

Class 1b: Traffic flow restabilizes for high densities, i.e., traffic flow becomes

smoothly creeping rather than oscillatory if severely congested.49

Class 2a: Only congested traffic flow (on the “right-hand side” of the fundamental

diagram) can become unstable, and there is no restabilization: ρ2 > ρK , ρ3 = ρ4 =
ρmax. Typically, the instability is always of a convective nature. However, a small

range of absolutely unstable traffic is possible for congested traffic of comparatively

low density.

Class 2b: As Class 2a, but with restabilization, ρ3 < ρmax.

Class 3: Absolute stability everywhere, ρ1 = ρmax.

Comparing the patterns simulated in realistic open systems with observations (cf.

Chapter 21), we conclude the following:

Realistic model-parameter combinations for highway traffic flow correspond

to stability classes 2a or 2b.

Depending on the parameter set, one and the same model can belong to different

stability classes. Figure 16.17 shows that the IDM can assume all classes. With

the help of this model, we will now discuss the influencing factors leading to the

different classes.

49 We are aware that, in vehicles with manual transmission, it is hard to drive smoothly at very low

speeds where the clutch must be operated even when driving in first gear. While this is considered

in sub-microscopic models, it is ignored for the models considered here. In effect, the difficulty

to drive very slowly leads to persistent noise at a sub-microscopic level. However, if traffic flow

is stable at a microscopic or macroscopic level, these perturbations are not collectively amplified,

i.e., traffic data show strong fluctuations but no deterministic signal.
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Fig. 16.17 (c) Class diagram of the IDM as a function of the time gap T and acceleration a. The

other IDM parameters and the vehicle length 5 m are the same as in Fig. 16.9. (a), (b), (d) sta-

bility diagrams for three points of the class diagram corresponding to the classes 2a, 2b, and 1b,

respectively. (e) class diagram for city traffic (v0 reduced to 50 km/h, everything else unchanged).

Agility. Agility or responsiveness corresponds to the acceleration parameter a.

Starting with low agility and increasing the agility by increasing the parameter a,

the stability class changes from Class 1 (instabilities are possible even for dense

but uncongested traffic), to Class 2 (only congested traffic can become unstable) to

Class 3 (no instability anywhere). Notice that in some other microscopic or macro-

scopic models, the agility corresponds to the inverse of the speed adaptation time τ .

Time gap. The capacity of traffic flow (maximum flow) increases with decreasing

time gap T in car-following mode. Simultaneously, reducing T also reduces the

time margin of the drivers to react to changing situations, so traffic flow generally

becomes more unstable. Remarkably, this does not influence the transition between

Classes 1 and 2 which essentially is determined by the acceleration a.

Anticipation. By scaling the IDM appropriately (cf. Problem 16.8), one can show

that the dynamics, and particularly the stability class, remains unchanged when si-

multaneously



402 16 Stability Analysis

• increasing the anticipation by decreasing the comfortable deceleration b by a

factor fb < 1,

• decreasing the agility by reducing a by a factor of fb,

• increasing the time gap T by a factor 1/
√

fb,

• decreasing the desired speed v0 by a factor of
√

fb, and

• leaving s0 unchanged.

As expected, this means that a decrease of agility is compensated for by increasing

the responsiveness. Moreover, exact compensation is reached if the ratio a/b re-

mains unchanged. Remarkably, the restabilization properties (subclasses 1a, 2a vs.

1b, 2b, 3) do not depend on the anticipation at all. To see this, we notice that the

IDM corresponds to stability subclass a (1a, or 2a) if and only if

a <
s0

T 2
(16.140)

(and to one of the classes 1b, 2b, or 3, otherwise), and that this distinction criterion

does not contain b as influencing factor.

16.9 Short-Wavelength Collective Instabilities

When discussing the collective instabilities discussed in the Sections 16.4 – 16.8,

we have assumed long-wavelength instabilities, i.e., the first instability is always

one with respect to waves whose wave number tends to zero and the associated

wavelength tends to infinity. Mathematically, it can be shown that this is true for all

time-continuous car-following models without explicit reaction time formulated by

coupled ordinary differential equations, and for all macroscopic local second-order

models, i.e., formulated by partial differential equations for the density and speed

fields.

However, many popular models do not belong to one of these mathematical

classes. Examples include iterated coupled maps, time-continuous car-following

models with reaction times, or nonlocal macroscopic models. Figure 16.18 shows

the simultaneous occurrence of long-wavelength and short-wavelength collective

instabilities for the IDM with an explicit delay by a reaction time Tr = 1.2s (but

no other human driving aspect of Chapter 13 added). We observe that the short-

wavelength instabilities propagate faster than the long-wavelength instabilities, so

that they “collide” into each other. However, neither these collisions nor the propa-

gation velocity of the short-wavelength modes (about −30km/h) are realistic. We

conclude that short-wavelength instabilities should not occur for realistic model-

parameter combinations.

Finally, we emphasize that, for realistic parameters, the first instability of models

including potential short-wavelength instabilities is generally of the long-wavelength

type. Since it is not possible to test or prove this mathematically, simulations are

necessary to check this property.
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Fig. 16.18 Simultaneous appearance of long-wave and short-wave instabilities in the IDM with

reaction time Tr = 1.2s for initially steady-state traffic at ρe = 30km−1 with a small perturbation.

The IDM parameters are v0 = 120km/h, T = 1.5s, a = 1m/s2, b = 1.3m/s2, s0 = 2m, and the

vehicle length l = 5m.

Problems

16.1. Characterizing the Type of Instability

Consider the dynamics schematically shown in Fig. 16.1. Is it a local or string in-

stability? If the latter is true: Is the instability absolute or convective, linear or non-

linear?

16.2. Propagation Velocity of Traffic Waves in Microscopic Models

Show that the long-wavelength limit (16.57) of the microscopic propagation velocity

corresponds macroscopically to the gradient c̃ = Q′
e(ρ) of the fundamental diagram.

To this purpose, scale the microscopic propagation velocity to dimensional physical

units, and transform it from the system comoving with the vehicles to a road-based

fixed system. Finally, express the microscopic quantities in terms of macroscopic

variables.

16.3. Instability Limits for the Full Velocity Difference Model

Consider the acceleration equation (11.25) of the FVDM with a speed adaptation

time τ = 5s and a triangular fundamental diagram given by the microscopic relation

ve(s) = min(s/T,v0), T = 1s. What is the minimum value of the sensitivity γ to

speed differences to ensure (i) local stability, (ii) no (damped) oscillations when a

single vehicle follows a leader with at a given speed profile, (iii) string stability?

16.4. Stability Properties of the Optimal Velocity Model Compared to Payne’s

Model

Consider the OVM and Payne’s model for general, but equivalent, optimal-velocity

(steady-state) relations and show that the conditions for collective (string or flow)
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stability of both models are equivalent. Hint: Find the macroscopic equivalent Ve(ρ)
of the microscopic steady-state relation ve(s), derive a relation between the deriv-

atives v′e(s) and V ′
e(ρ), express the OVM stability condition in macroscopic terms,

and compare it with the condition (16.125) for Payne’s model.

16.5. OVM with “Pushing” from Behind

Consider the model (16.93) and show that, for λ = 0.5, the OV gradient V ′(s)
at neutral stability (boundary between string stability and instability) becomes six

times as large as that for the normal OVM greatly increasing stability. Now consider

the triangular fundamental relation vopt(s) = min((s− s0)/T,v0) and show that this

model still leads to collisions for any platoon of ≥ 3 vehicles if the leader stops

and λ > (1+ v0T/s0)
−1 which typically is the case already for values as small as

λ = 0.05.

16.6. Flow Instability in Payne’s Model and in the Kerner-Konhäuser Model

Consider Payne’s model and the Kerner-Konhäuser model with a triangular funda-

mental diagram Qe(ρ) = min(V0ρ ,1/T (1− leffρ)) and the parameters leff = 6m,

V0 = 144km/h and T = 1.1s. (i) Show that Payne’s model is unconditionally lin-

early stable if τ < T/2, and flow unstable in the congested regions, otherwise.

(ii) For the Kerner-Konhäuser model, determine the parameter c2
0 such that this

model is string unstable in the density range ρ ∈ [20vehicles/km,50vehicles/km].

16.7. Flow Instability of the GKT Model

Consider sufficiently congested traffic such that the speed variation coefficient

σV/v =
√

α(ρmax) can be considered as constant. Show that, in the local limit of

zero anticipation distance (γ = sa = 0), the GKT model is unconditionally unstable

in this situation for all reasonable parameter values. Furthermore, show that antic-

ipation stabilizes traffic flow by deriving the approximate Condition (16.131) for

densities near the maximum density.

16.8. IDM Stability Class Diagram for Other Parameter Values

Calculate the stability class diagram as in Fig. 16.17(c) but assume a comfortable

deceleration b∗ = 2m/s2 instead of b = 1.5m/s2, and v∗0 = 139km/h instead of

120 km/h. Is it possible to use this diagram without recalculating anything, just by

scaling the axes appropriately?

Hint: Formulate the IDM model equations in scaled units by scaling time in

multiples of the unit time
√

s0/b (of the order of 1 s), and space in multiples of the

minimum gap s0. Show that the scaled model depends on only three dimensionless

parameters

ṽ0 =
v0√
bs0

, f̃ =
a

b
, T̃ = T

√

b

s0
,

and on the scaled vehicle length l̃veh = lveh/s0. Now use the fact that all dynamic

properties (and, in particular, the stability class) depend on the scaled parameters

and the scaled vehicle length, only. Find appropriate scalings for the two axes of the

class diagram.
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16.9. Fundamental Diagram with Hysteresis

Given are the following characteristics of highway traffic flow: Average vehicle

length l = 4.67m, average gap in car-following situations s= s0+vT where s0 = 2m

and T = 1.6s, average free-flow speed 120 km/h, and critical density at traffic break-

down (free → congested) ρc = 20veh/km per lane. From these data it follows that

two values of traffic flow are possible in a certain density range.

1. At which traffic flow does a breakdown occur, i.e., where does the free branch

of the fundamental diagram end?

2. Determine the “congested branch” of the fundamental diagram and the density

at which it intersects with the free branch. For which density range can free and

congested traffic exist simultaneously?

3. The outflowing region of congestions is characterized by the intersection (ρout,Qout)
of the free and congested branches of the fundamental diagram. Indicate ρout

and calculate Qout. Also calculate the capacity drop as the difference between

the maximum flow of free traffic and Qout

4. Make a graph of the fundamental diagram showing its mirrored λ -shape.
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Solutions to the Problems

Problems of Chapter 2

2.1 Edie’s Definitions

1. The depicted spatiotemporal area is A = 3,200ms. The total time of the trajec-

tories spent inside A is given by

t tot = 40s+4s
10

∑
j=1

j = 40+4 ·55s = 260s.

The total distance covered by the trajectories with parts inside A are given by

xtot = 35m+5m
10

∑
j=1

j = 310m.

Hence, Edie’s density, flow, and average speed are given by

ρEdie =
t tot

A
= 81.3veh/km, QEdie =

xtot

A
= 0.0969veh/s,

V Edie =
QEdie

ρEdie

= 1.19m/s.

2. Macroscopic flow at x = 40m inside A (counting the vehicle passing at t = 0

but not the one stopping at x = 40m):

Q =
7veh

40s
= 0.175veh/s .

The time mean speed V in A is near the maximum speed of 10 m/s since the

stopped vehicle did not yet pass, i.e., it does not count. Hence, the density esti-

mated by temporal quantities is given by

649
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ρ̂ =
Q

V
= 17.5veh/km,

which is less than 25% of Edie’s density.

3. At t = 20s, n = 6 vehicles are inside A, hence ρ = 75veh/km, near Edie’s

density. The space-average speed is given by

Vs ≈
2 ·10m/s

n
= 3.33m/s.

4. The situation is not stationary, so the condition for Vs = V H is not satisfied.

In fact, the temporal harmonic mean V H at x = 40m is near 10 m/s without

counting the vehicle stopping at x = 40m (as in part 2), and undefined when

including it.

Problems of Chapter 3

3.1 Analysis of Empirical Trajectory Data

1. Flow, density, and speed. Using the spatiotemporal region [10s,30s]× [20m,80m]
suggested for a representative free-flow situation, we obtain by trajectory counting:

Qfree =
11veh

20s
= 1,980veh/h, ρfree =

3veh

60m
= 60veh/km.

The speed can be deduced either from the gradient of the trajectories or from the

hydrodynamic relation Q/ρ:

V
gradient
free =

60m

5s
= 43.2km/h, V

hyd
free =

Qfree

ρfree

= 39.6km/h.

This discrepancy is tolerable in view of the reading accuracy (one may also count

12 vehicles in 20 s, yielding Q = 2,160veh/h and thus ρ = 43.2km/h). For con-

gested traffic, we use, again, the suggested spatiotemporal region [50s,60s]×
[40m,100m] and obtain analogously

Qcong =
2veh

10s
= 720veh/h, ρcong =

6veh

60m
= 1,000veh/km,

V hyd
cong =

Qcong

ρcong
= 7.2km/h.

2. Propagation velocity. The stop-and-go wave can be identified by the spatiotem-

poral region with nearly horizontal trajectories. First, we observe that, in the di-

agram, the gradient of the (essentially parallel) upstream and downstream wave

boundaries are negative, i.e., the wave propagates against the direction of traffic.

To determine the propagation velocity, we estimate from the diagram
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c ≈− 140m

(60−33)s
=−5.2m/s =−19km/h .

3. Travel time increase. Without being obstructed by the traffic wave, the consid-

ered vehicle entering at t = 50s into the investigated road section (x = 0) would

leave the section (x = L = 200m) after about 16 s. This can be deduced either by

linearly extrapolating the first seconds of the trajectory, or by the quotient L/Vfree.

The actual vehicle leaves the investigated region at t = 86s. Thus, the delay imposed

by this traffic wave on the vehicle is 20 s.

4. Lane-changing rate. By counting all lane changes entering and leaving the con-

sidered lane in the spatiotemporal region [0s,80s]× [0m,140m], i.e., trajectories

beginning or ending inside this region1, we obtain the lane-changing rate by

r ≈ 6 changes

80s 140m
= 0.00054

changes

m s
≈ 1,900

changes

km h
.

3.2 Trajectory Data of “Obstructed” Traffic Flow

1. The trajectory data shows a queue at a traffic light. The horizontal bar marks the

position of the traffic light and the duration of the red light phase.

2. Flow Qin = 5 trajectories per 20 s = 0.25 veh/s = 900 veh/h.

3. Following the trajectory which starts at x = −80m, t = −16s and which ends

at (x, t) = (80m,0s), we get the speed

vin =
160m

16s
= 10m/s = 36km/h.

The density is read off the diagram as one trajectory per 40 m or is calculated

using ρ = Q/v. Either way yields ρ = 25veh/km.

4. Density in the congested area: 8 horizontal trajectories per 40 m ⇒ ρjam =
200veh/km.

5. Outflow after the red light turns green: The best way is to count the number of

lines within a 20 s interval above the blue dots marking the end of the acceler-

ation phase, giving 10 lines per 20 s and thus Qout = 0.5veh/s = 1,800veh/h.

The speed is the same as in free traffic (the trajectories are parallel to those

further upstream), i.e., V = 36km/h. The density is obtained again by count-

ing trajectories (two lines per 40 m) or via the hydrodynamic relation, yielding

ρ = 50veh/km.

6. Propagation velocities of the fronts can be read off the chart as the gradient

of the front lines (marked by the dots) or using the continuity equation (cf.

Chapter 8):

1 Outside this region, a positive bias is unavoidable because real lane changes cannot be distin-

guished from the begin/end of recorded trajectories.
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free → congested: v
up
g =

∆Q

∆ρ
=

−900veh/h

175veh/km
=−5.17km/h,

congested → free: vdown
g =

∆Q

∆ρ
=

1,800veh/h

−150veh/km
=−12km/h .

7. Without the red light the vehicle entering at x =−80m and t = 20s would have

reached the “end” (upper border) of the diagram (x = 100m) at tend = 38s. De

facto, it arrives at x = 100m at time t = 69s, thus delayed by 31 s.

8. The braking distance is sb = 25m, while the distance covered during the accel-

eration phase is sa = 50m. Thus

b =
v2

2sb

= 2m/s2, a =
v2

2sa

= 1m/s2.

Alternatively, we can calculate the braking distance using the definition of the

acceleration and the duration ∆ t of the acceleration/deceleration:

b =−∆v

∆ t
=−−10m/s

10s
= 2m/s2, a =

∆v

∆ t
=

10m/s

10s
= 1m/s2 .

3.3 Trajectories of City Traffic

1. Signalized intersections are expected to be a little bit downstream of the vehicles

stopping without a leader, i.e., at about x1 = 50m and x2 = 250m (and possibly

at x3 = 355m). The red phase starts when the first leader about to stop behind

the traffic light begins to decelerate and ends a little bit before the first vehicle

starts to accelerate (reaction time), i.e., 317 s - 350 s at x1 and 317 s - 378 s at x2

(and 310 s - 335 s at x3 but the red phase may have started earlier)

2. Beginning trajectories: lane changes 3-2 and 1-2; ending trajectories: lane

changes 2-3 and 2-1

3. Wave velocity (sequence of the first eight starting vehicles between 380 s and

390 s): w = −60m
10s

=−21.6km/h.

3.4 Bicycle Trajectory Data

1. Shown is a moving traffic wave of stopped bicycles that is neither growing

nor shrinking, so outflow ≈ inflow. Theoretically, the moving cyclists could be

in a maximum-flow state at the boundary between free and congested traffic.

However, in view of their close distance of about 4 m, this region is congested

as well.

2. Inside the “stop” region: ρmax = 24/40m = 0.6/m, Q= 0, V = 0; in the regions

outside the jam, e.g., at t = 190s: ρ = 13/40m = 0.325/m, Q = 13/40s =
0.325/s, V = Q/ρ = 1m/s.

3. Region A = 20s · 10m = 200ms, t tot = 6 · 20s, so ρEdie = 120s/200ms =
0.6/m.

4. w =−40m/27s ≈−1.5m/s.

5. Time gap T = (∆x− leff)/V = (1/ρ−1/ρmax)/V = (3.08m−1.67m)/1m/s=
1.41s.
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Problems of Chapter 4

4.1 Map Matching

According to the problem statement, the vehicle can only be on road 1 with lateral

position y1 = 0, or on road 2 at y2 = 30m. Since the GNSS position Ŷ is assumed to

be unbiased and Gaussian distributed with a standard deviation σ = 10m, we have

the two conditional probability densities2

f1(ŷ) =
1

σ
φ

(

ŷ

σ

)

, f2(ŷ) =
1

σ
φ

(

ŷ− y2

σ

)

with the density of the standard normal distribution φ(z) ∝ exp(−z2/2). Thus, the

conditional probabilities for the measuring event

E: “the GNSS position Ŷ is in the range [ŷ−∆y/2, ŷ+∆y/2]”

provided the true position is on road r1 (y = y1) or on r2 (y = y2), are given, for

sufficiently small ∆y, by

P(E|r1) = f1(ŷ)∆y, P(E|r2) = f2(ŷ)∆y.

The small interval ∆y is only introduced to avoid a “divided by zero” situation.

1. The desired probability P(r1|E) = P(y = y1|E) can be calculated using Bayes’

Theorem:

P(r1|E) =
P(E|r1)P(r1)

P(E)

=
P(E|r1)P(r1)

P(E|r1)P(r1)+P(E|r2)P(r2)

=
f1(ŷ)P(r1)

f1(ŷ)P(r1)+ f2(ŷ)P(r2)

=
exp(−2)

exp(−2)+ exp(−1)
= 18%,

where we have used the non-informative priors P(r1) = P(r2) = 1/2. We con-

clude that, without any prior information, the best map matching is to road 2. It

will be correct in 82% of all cases.

2. The prior information that the density on road 1 is nine times higher than that

on road 2 means that, when blindly picking a vehicle, it is on road 1 in nine out

of ten cases, P(r1) = 0.9 and P(r2) = 1−P(r1) = 0.1. Using the flow instead

of the density for estimating the priors would give a bias towards the road with

the faster speed (presumably road 1). Updating the priors in the second to last

2 As per convention, we denote random variables in uppercase letters (Ŷ ) and realizations (mea-

surements) in lowercase (ŷ).
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line of problem part 1 gives

P(r1|E) =
0.9 f1(ŷ)

0.9 f1(ŷ)+0.1 f2(ŷ)
=

0.9 exp(−2)

0.9 exp(−2)+0.1exp(−1)
= 67%.

With this prior information, there is now a two-thirds chance that mapping onto

road 1 is correct, although it is more distant to the GNSS position than road 2.

3. The best clues can be obtained from the fact of continuity: a car does not jump.

So, past position with nonambiguous map matching, or the position where the

device was switched off after the previous trip, are good bets. By using the

Hidden Markov approach, Sect. 4.5 transforms these clues into a formal model.

4.2 Floating-Car Data

GPS data provide space-time data points and anonymized IDs of the equipped vehi-

cles. We can obtain their trajectories by connecting the data points in a space-time

diagram (via a map-matching process). From the trajectories, we can directly obtain

the travel time and infer the instantaneous speed by taking the gradients. Low speeds

on a highway (e.g., 30 km/h) usually indicate a traffic jam. Since the data provide

spatiotemporal positions of the vehicles, we can deduce the location of congested

zones, including their upstream and downstream boundaries. With a sampling rate

of two per minute, the vehicle can cover 1 km and more between a data point in free

traffic. Fortunately, in congestions, the points are naturally closer and jam fronts are

resolved at a high spatial resolution whenever an equipped vehicle “floats” through.

The temporal resolution depends on the penetration level of probe vehicles. GNSS

measurements are only accurate to the order of 10 m and careful map-matching/error

checking is necessary to exclude, for example, stopped vehicles on the shoulder or

vehicles on a parallel road (see Problem 4.1). Therefore, GNSS data do not reveal

lane information, nor information on lane changes. If the percentage of probe ve-

hicles providing positional data is low, variable, and unknown, we can not deduce

extensive quantities like traffic density and flow from this type of data. To wrap it

up: (1): yes, (2): no, (3): no, (4): no, (5): yes, (6): yes, (7): yes.

4.3 Relative Errors of Probe-Based Flow Estimations

1. For a Poisson distributed variable, the expectation value and the variance are

given by µ , so that the relative error is δn = 1/
√

µ = 1/
√

n, and, together

with Eq. (4.1), δn = 1/
√

q∆ t. With the partial volumes q = θQ the relative

error is given by δn = 1/
√

θQ∆ t. On the one hand it is attractive to report

flow estimates within short aggregation intervals. On the other hand, the relative

errors become smaller with longer aggregation intervals as more probe vehicles

are observed. FCD-based flow estimates work best for high penetration rates

and high traffic flows, e.g., on multi-lane highways and/or at times of heavy

traffic.

2. With θ = 0.1 and ∆ t = 0.25h, we obtain δn≈ 14% for Q= 2,000/h, δn≈ 45%

for 200 /h, and δn ≈ 8% for 6,000 /h.
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3. With ∆ t = 1/(θQδn2) and the values from above the aggregation interval

needed for a relative error of 10% is 30 min. A doubling of the penetration

level θ halves the value.

4.4 Traffic State Estimation Using Floating-Car Data

1. With a penetration level θ = 1% of floating cars, the partial density over all four

lanes as a function of the one-lane density ρ is given by

ρ tot
FC = 4θρ ,

so ρ tot
FC = 0.8veh/km for the uncongested, and ρ tot

FC = 3veh/km for the con-

gested regions, respectively.

2. On average, there are 4km ·3veh/km = 12vehicles inside the congestion.

3. If the traffic jam fronts are stationary, the flow through the jam fronts free →
congested and congested → free is equal to Qtot = 6,000veh/h. If, furthermore,

the average speed of the floating cars is the same as that of all vehicles, the

partial flow is given by pQtot = 60veh/h.3 So, we have an average rate of one

update of the jam-front positions and the segment travel time per minute. We

conclude that even for a very small penetration level of 1%, we have a sufficient

update rate.

4.5 Analysis of Extended Floating-Car Data

1. Here, the episode t > 225s is most revealing since the leader already shows

oscillations. While the speed amplitude (from the local minimum to the local

maximum) of the leader is on average about 3 m/s, that of the follower increases

to about 5 m/s for the last follower. Hence, there is evidence for flow instabilities

(more precisely, the following behavior is locally stable but string unstable as

described in more detail in Sections 16.3 and 16.4).

2. The maxima and minima of the speed curves of the leader and the last follower

are shifted by about 5 s. Thus, the average delay in an individual follower’s

response is of the order of 1.5 s to 2 s.4

3. Between t ≈ 214s and 218s, the speed drops from about 11m/s to 1 m/s corre-

sponding to a maximum deceleration of b = 2.5m/s2. The maximum accelera-

tion (between t ≈ 222s and 224 s) has the same order.

4. The last driver (vehicle 4) follows most closely with time gaps si/vi strongly

varying but generally below 1 s. The shortest minimum gap (about 1 m), how-

ever, is observed for the driver of vehicle 3.

3 If, for example, the average floating car speeds are lower, the partial flow would be lower as well

by virtue of Edie’s relation (2.8).
4 This is not necessarily due to reaction times. In Chapters 11 and 12, we will see that even models

with zero reaction times display such a delay.
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Problems of Chapter 5

5.1 Data Aggregation at a Cross-Section

1. Flow and speed. With an aggregation interval ∆ t = 30s and n1 = 6, n2 = 4

measured vehicles on lanes 1 and 2, respectively, the flow and time mean speed on

the two lanes are

Q1 =
n1

∆ t
= 0.2veh/s = 720veh/h,

V1 =
1

n1
∑

i

v1i = 25.8m/s,

Q2 =
n2

∆ t
= 0.133veh/s = 480veh/h,

V2 =
1

n2
∑

i

v2i = 34.0m/s.

2. Density. When assuming zero correlations between speeds and time headways,

the covariance Cov(vi,∆ ti) = 0. With Eq. (5.23), this means that calculating the true

(spatial) densities by Q/V using the arithmetic (time) mean speed gives no bias:

ρ1 =
Q1

V1
= 7.74veh/km, ρ2 =

Q2

V2
= 3.92veh/km .

3. Both lanes combined. Density and flow are extensive quantities increasing with

the number of vehicles. Therefore, building the total quantities by simple summation

over the lanes makes sense:

ρ tot = ρ1 +ρ2 = 11.66veh/km, Qtot = Q1 +Q2 = 1,200veh/h .

Since speed is an intensive quantity (it does not increase with the vehicle number),

summation over lanes makes no sense. Instead, we define the effective aggregated

speed by requiring the hydrodynamic relation to be valid for total flow and total

density as well:

V =
Qtot

ρ tot
=

ρ1V1 +ρ2V2

ρ tot
=

Qtot

Q1/V1 +Q2/V2
= 28.5m/s = 102.9km/h.

By its derivation from the hydrodynamic relation, this effective speed is the space

mean speed rather than the time mean speed measured directly by the detectors.

We notice that the effective speed is simultaneously the arithmetic mean weighted

with the densities, and the harmonic mean weighted with the flows. However, the

weighting with the densities requires that the density estimates itself are known

without bias. This is the case here but not generally. Since flows can always be

estimated without systematic errors from stationary detectors, the harmonic mean

weighted with the flows is preferable.

4. Fraction of trucks. Two out of six (33%) are in the right lane, none in the left,

two out of ten (20%) total. Notice again that the given percentages are the fraction

of trucks passing a fixed location (time mean). In the same situation, we expect the

fraction of trucks observed by a “snapshot” of a road section at a fixed time (space

mean) to be higher, at least if trucks are generally slower than cars.
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5.2 Determining Macroscopic Quantities from Single-Vehicle Data

The distance headway ∆xi = 60m is constant on both lanes. All vehicles are of the

same length l = 5m and all vehicles on a given lane l (left) or r (right) have the

same speed vl
i = 144km/h = 40m/s and vr

i = 72km/h = 20m/s, respectively.

1. Time gap / headway. The headways ∆ ti = ∆xi/vi are

∆ t l
i =

60m

40m/s
= 1.5s, ∆ tr

i =
60m

20m/s
= 3.0s .

The time gaps Ti are equal to the headway minus the time needed to cover a distance

equal to the length of the leading vehicle, Ti = ∆ ti − li−1

vi−1
. Since all vehicle lengths

are equal, this results in

T l
i =

60m−5m

40m/s
= 1.375s, T r

i =
60m−5m

20m/s
= 2.75s .

2. Macroscopic quantities. We assume an aggregation time interval ∆ t = 60s.

However, due to the stationary situation considered here, any other aggregation in-

terval will lead to the same results. Directly from the definitions of flow, occupancy,

and time-mean speed, we obtain for each lane

Ql =
1

∆ t l
i

=
1

1.5s
= 2,400veh/h,

O
l =

0.125

1.5
= 0.083 = 8.3%,

V l = 144km/h,

Qr =
1

∆ tr
i

=
1

3s
= 1,200veh/h .

O
r =

0.25

3.0
= 0.083 = 8.3% .

V r = 72km/h.

Due to the homogeneous traffic situation, the arithmetic and harmonic time-mean

speed are the same and directly given by the speed of the individual vehicles.

Totals and averages of both lanes. As already discussed in Problem 5.1 summing

over the lanes to obtain a total quantity makes only sense for extensive quantities

(Q, ρ) but not for the intensive ones (V , O).

Flow:

Qtot =
∆N

∆ t
=

∆Nl +∆Nr

∆ t
= 3,600veh/h, Q =

Qtot

2
= 1,800veh/h.

Occupancy:

O = O
l = O

r = 0.083.

Arithmetic time mean speed:

V =
1

∆N
∑

i

vi =
40 ·40m/s+20 ·20m/s

60
= 120km/h.

Harmonic time mean speed:
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VH =
∆N

∑1/vi

=
60

40
40m/s

+ 20
20m/s

= 108km/h.

We observe that the arithmetic mean is larger than the harmonic mean.

3. Which mean? In traffic flow, there are four sensible ways to average, consisting

of the four combinations of (i) one of two physical ways (time mean and space

mean), (ii) one of two mathematical ways (arithmetic and harmonic).

• Time mean means averaging at a fixed location over some time interval as done

by stationary detectors.

• Space mean means averaging at a fixed time over some space interval (road sec-

tion), e.g., when making a snapshot of the traffic flow.

For the space mean, we have (cf. the previous problem)

V =
ρ1V1 +ρ2V2

ρ tot
=

Qtot

Q1/V1 +Q2/V2

while, for the time mean, we simply have

V =
Q1V1 +Q2V2

Qtot
.

The time mean is generally larger than the space mean because, at the same partial

densities, the class of faster vehicles passes the cross-section more often within the

aggregation interval than the vehicles of the slower class do. The arithmetic average

is generally larger than the harmonic average which can be shown for any data. Only

for the trivial case of identical data, both averages agree.

Here, ρ1 = ρ2 but Q1 6= Q2, so the simple (not weighted) arithmetic average over

lanes applies for the space mean speed.

4. Speed variance between lanes. Because of identical speeds on either lane, the

total variance of the speeds in the left and right lane is the same as the inter-lane

variance sought after:

σ2
V = E(vi −E(vi))

2

=
1

60

(

40[40−33.3]2 +20[20−33.3]2
)

= 88.9m2/s2 .

Total speed variance. We divide the speed variance

σ2
V =

1

N
∑

i

(vi −V )2

into two sums over the left and right lane, respectively:
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σ2
V =

1

N

[

N1

∑
i1=1

(vi1 −V )2 +
N2

∑
i2=1

(vi2 −V )2

]

.

Now we expand the two squares:

(vi1 −V )2 = (vi1 −V1 +V1 −V )2 = (vi1 −V1)
2 +2(vi1 −V1)(V1 −V )+(V1 −V )2,

where V1 is the average over lane 1. We proceed analogously for (vi2 −V )2. Inserting

this into the expression for σ2
V and recognizing that

∑
i1

(vi1 −V1)(V1 −V ) = 0, ∑
i2

(vi2 −V2)(V2 −V ) = 0

and

σ2
V1

=
1

N1

N1

∑
i1=1

(vi1 −V1)
2

and similarly for σ2
V2

, we obtain

σ2
V =

N1

N

[

σ2
V1
+(V1 −V )2

]

+
N2

N

[

σ2
V2
+(V2 −V )2

]

.

With p1 = N1/N and p2 = N2/N = 1− p1, we get the formula of the problem state-

ment. If p1 = p2 = 1/2 we have V = (V1 +V2)/2 and thus

σ2
V =

1

2

[

σ2
V1
+σ2

V2

]

+
(V1 −V2)

2

4
.

Notice that this mathematical relation can be applied to both space mean and time

mean averages.

5.3 Analytical Fundamental Diagram

We have to distinguish between free and congested traffic.

Free traffic.

V free(ρ) =V0 = const .

Flow by using the hydrodynamic relation:

Qfree(ρ) = ρV free(ρ) = ρV0 .

Congested traffic. The speed-dependent equilibrium gap between vehicles, s(v) =
s0 + vT , leads to the gap-dependent equilibrium speed V cong(s):

V cong(s) =
s− s0

T
.

Using the definition of the density ρ , we replace the gap s:
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ρ =
number of vehicles

road length

=
one vehicle

one distance headway (front-to-front distance)

=
1

vehicle length + gap (bumper-to-bumper distance)
=

1

l + s
.

Thus s(ρ) = 1
ρ − l and therefore

V cong(ρ) =
s− s0

T
=

1

T

[

1

ρ
− (l + s0)

]

.

The flow-density relation is obtained again by the hydrodynamic relation:

Qcong(ρ) = ρV cong(ρ) =
1

T
[1−ρ(l + s0)] .

The sum leff = l + s0 of vehicle length and minimum gap can be interpreted as an

effective vehicle length (typically 7 m in city traffic, somewhat more on highways).

Accordingly, the maximum density is

ρmax =
1

l + s0
=

1

leff

.

To obtain the critical density ρC separating free and congested traffic, we determine

the point where the free and congested branches of the fundamental diagram inter-

sect:

Qcong(ρ) = Qfree(ρ) ⇒ ρV0T = 1−ρ(l + s0) ⇒ ρC =
1

V0T + leff

.

This is the “tip” of the triangular fundamental diagram, and the corresponding flow

is the capacity C (the maximum possible flow):

C = Qcong(ρC) = Qfree(ρC) =
1

T

(

1

1+ leff
V0T

)

. (1)

The capacity C is of the order of (yet always less than) the inverse time gap T . The

lower the free speed V0, the more pronounced the discrepancy between the “ideal”

capacity 1/T and the actual value.

Given the numeric values stated in the problem, we obtain the following values

for ρmax, ρC, and C:

ρmax = 143veh/km, ρC = 16.6veh/km, C = 0.552veh/s = 1,990veh/h.

5.4 Estimating the Velocity of Traffic Waves
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1. We can use the minima of the speeds even if they are biased provided that the

relation between the real and biased speed is strictly monotonous (which is the

case) since we are interested in the argument of the minimum (the time) which

is unchanged in this case.

2. Taking the first speed minima (with the difference D07-D09 marked in the fig-

ure of the problem statement) of detector pairs, we obtain

• D07-D08: ∆x =−1,000m, ∆ t = 210s, w = ∆x/∆ t =−4.76m/s

• D08-D09: ∆x =−1,000m, ∆ t = 240s, w = ∆x/∆ t =−4.17m/s

• D07-D09: ∆x =−2,000m, ∆ t = 450s, w = ∆x/∆ t =−4.44m/s

The observations are around −4.5m/s ≈−16km/h.

3. The errors are rather large because of the short distances between the detectors

and the aggregation time interval of 1 min. Graphically estimating the slope of

the traffic waves in spatiotemporal plots such as Fig. 5.11 or analyzing the cross

correlation function (5.31) gives more precise results.

5.5 Fundamental Diagram Estimated from Stationary Detector Data

The free velocity can be read off the speed-density diagram (at low densities):

V free
A8 = 125km/h, V free

A9 = 110km/h.

(Dutch police is very rigorous in enforcing speed limits and uses automated systems

to do so. This explains why few people drive faster than 110 km/h.)

The flow-density diagram immediately shows the maximum density (the density

where the flow data drop to zero at the right-hand side) and the capacity (maximum

flow):

ρmax
A8 = 80veh/km, ρmax

A9 = 110veh/km,

CA8 = 1,700veh/h , CA9 = 2,400veh/h .

The headways can be calculated by solving the capacity equation (1) for T ,

T =
1− leffC

V0

C
=

1− C
V0ρmax

C
,

and thus

TA8 = 1.91s, TA9 = 1.27s.

One cautionary note is in order: If the data of the scatter plots are derived from

arithmetic time mean speeds via the relation ρ = Q/V (as it is the case here), the

density of congested traffic flow, and in the consequence T , will be underestimated,

although not so drastically. To a lesser extent, this also applies to harmonic aver-

ages (cf. Fig. 5.15). In the Sections 9.6.3 and 17.4, we will learn about more robust

estimation methods based on propagation velocities.
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Problems of Chapter 6

6.1 Reconstruction of the Traffic Situation Around an Accident

Part 1. In the space-time diagram below, thin dashed green lines mark confirmed

free traffic while all other information is visualized using thicker lines and different

colors. The respective information is denoted in the key. The signal “zero flow”

means “I do not know; either empty road or stopped traffic”.
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Part 2. The information of the first floating car (FC1) tells us the speed in free

traffic, Vfree = 10km/5minutes = 120km/h. From the second floating car (FC2) we

know that an upstream jam front passes x = 5km at 4:19 pm.

The stationary detectors D1 at x = 4km and D2 at 8 km both report zero flows in

a certain time interval but this does not tell apart whether the road is maximally con-

gested or empty. However, we additionally know by the two mobile phone calls that

the road is fully congested at 5 km while it is empty at 7 km. The congestion at 5 km

is also consistent with the trajectory of the second floating car. Since downstream

jam fronts (transition jam → free traffic) are either stationary or propagate upstream

at velocity c ≈ −15km/h but never downstream (apart from the special case of a

moving bottleneck), we know that the missing vehicle counts of D1 are the con-

sequence of standing traffic while that of D2 reflect an empty road (at least when

ignoring the possibility that there might be another obstruction more downstream

causing a second jam).

With this information, we can estimate the motion of the upstream jam front.

Assuming a constant propagation velocity cup, we determine this velocity from the

spatiotemporal points where detector D1 and the second floating car encounter con-

gestion, respectively:

cup =
−1km

6min
=−10km/h .
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The motion of this front is another strong evidence that D2 does not measure a

transition from free to fully congested traffic but from free traffic to no traffic at

all at x = 8km and t = 4:14 pm: Otherwise, the propagation velocity cup would be

−4km/5min = −48km/h in this region which is not possible even if we do not

require cup to be constant: The largest possible negative velocity cup, realized under

conditions of maximum inflow against a full road block, is only insignificantly larger

in magnitude than |cdown| ≈ 15km/h.

Now we have enough information to determine location and time of the initial

road block (accident). Intersecting the line

xup(t) = 4km+ cupt −25min) = 4km− t −25min

6
km/min

characterizing the upstream front with the trajectory xlast(t) of the last vehicle that

made it past the accident location,

xlast(t) = 8km+ v0(t −14min) = 8km+(t −14min)2km/min

yields location and time of the road block:

xcrash = 6km, tcrash = 4:13pm .

Part 3. After the accident site is cleared, the initially stationary downstream jam

front (fixed at the accident site) starts moving at the characteristic velocity cdown =
−15km/h = −1km/4min. Since the detector at x = 4km (D1) detects non-zero

traffic flow from 4:58 pm onwards, the front is described by

xdown(t) = 4km+ cdown(t −58min).

Obviously, the accident location (xcrash = 6km) is cleared exactly at the time where

the moving downstream jam front crosses the accident site (cf. the figure), i.e., at

tclear =4:50 pm.
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6.2 Dealing with Inconsistent Information

Using equal weights, V = 1
2
(V1 +V2), the error variance is

σ2
V =

1

4

(

σ2
1 +σ2

2

)

=
1

4

(

σ2
1 +4σ2

1

)

=
5

4
σ2

1 ,

assuming negligible systematic errors and independent random errors. Consequently,

the error increases by a factor of
√

5/4 due to the inclusion of the noisy floating-car

data. Using optimal weights,

Vopt =
1

5
(4V1 +V2) ,

yields the error variance

(σ2
V )opt =

1

25

(

16σ2
1 +σ2

2

)

=
1

25

(

16σ2
1 +4σ2

1

)

=
4

5
σ2

1 .

This means, adding floating-car data with a small weight to the stationary detector

data reduces the uncertainty by a factor of down to
√

4/5, in spite of the fourfold

variance of the floating-car data compared to the stationary detector data.

Problems of Chapter 7

7.1 Speed Limit on the German Autobahn?

The safety aspect of speed limits cannot be modeled or simulated by traffic-flow

models simply because these models are calibrated to normal situations (including

traffic jams). However, accidents are typically the consequence of a series of unfor-

tunate circumstances and extraordinary driving behavior which is not included in the

models. In contrast, the effect on fuel consumption can be modeled and simulated
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reliably by combining microscopic or macroscopic traffic flow models with the cor-

responding models for fuel consumption or emissions, cf. Chapter 23. To assess the

economic effect of speed limits, including social welfare or changed traffic patterns,

one needs models for traffic demand and route choice, i.e., models of the domain of

transportation planning. Traffic flow models are suited, however, to investigate cer-

tain environmental and societal aspects on a smaller scale. For example, traffic flow

models in connection with consumption/emission models describe the direct effect

of speed limits on emissions. Furthermore, since speed limits change the propensity

for traffic breakdowns and traffic flow/emission models can describe this influence

as well as the changed emissions in the jammed state, these models also describe

the indirect effect via traffic breakdowns.

Problems of Chapter 8

8.1 Flow-Density-Speed Relations

We require

Qtot = ∑
i

Qi = ∑
i

ρiVi = ρ totV

which we can fulfil by suitably defining the effective average V of the local speed

across all lanes. Solving this condition for V directly gives

V = ∑
i

ρi

ρ tot
Vi = ∑

i

wiVi,

i.e., the definition (8.7) of the main text.

8.2 Conservation of Vehicles

In a closed ring road, the vehicle number n(t) is the integral of the total vehicle den-

sity ρ tot = I(x)ρ over the complete circumference of the ring. Applying Eq. (8.17)

for νrmp = 0 and the hydrodynamic relation ρV =Q, we obtain for the rate of change

of the vehicle number

dn

dt
=−

∮

(

I(x)
∂Q(x, t)

∂x
+Q(x, t)

dI

dx

)

dx =−
∮

∂ (I(x)Q(x, t))

∂x
dx = IQ|xe

xa
.

If the road is closed, we have xe = xa, so dn
dt

= 0 and the total vehicle number n does

not change over time.

8.3 Continuity Equation I

(i) The continuity equation for x < 0 or x > L = 300m, i.e., outside of the merging

region, has no source terms and reads

∂ρ

∂ t
+

∂Q

∂x
= 0.
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In the merging region 0 ≤ x ≤ L, we have an additional source term νrmp(x, t) that

generally depends on space and time:

∂ρ

∂ t
+

∂Q

∂x
= νrmp(x, t).

Now we assume that νrmp is constant with respect to x over the merging region L. In

view of the definition of ν , this means that the differential merging rate on a small

segment of the merging lane, divided by the number of main-road lanes, is constant.

We obtain the connection between the ramp flow Qrmp and νrmp by integrating ν
over the merging region and requiring that the result is equal to the ramp flow (if

there are several ramp lanes, the total ramp flow) divided by the number I of main-

road lanes. Thus,

Qrmp

I
=

L
∫

0

νrmp dx = νrmp

L
∫

0

dx = νrmp L,

so

νrmp =
Qrmp

IL
=

1

2

600veh/h

300m
= 1veh/m/hour.

(ii) It is easy to generalize the source term νrmp(x) to inhomogeneous differential

merging rates. In the most general case, we prescribe a distribution function of the

merging points5 over the length of the merging lane by its probability density f (x):

νrmp(x, t) =
Qrmp(t)

I
f (x).

For case (i) (constant differential changing rates),

funiform(x) =

{

1/L if 0 ≤ x ≤ L,
0 otherwise,

i.e., the merging points are uniformly distributed over the interval [0,L]. To model

drivers who, in their majority, merge in the first half of the length of the merging

lane, we prescribe a distribution f (x) which takes on higher values at the beginning

than near the end of the lane, e.g., the triangular distribution

fearly(x) =

{

2(L−x)
L2 if 0 ≤ x ≤ L,

0 otherwise.

If we want to describe a behavior where drivers change to the main road near the

end (which applies for some situations of congested traffic, we mirror fearly(x) at

5 Later on, when we explicitly model lane changes by microscopic models, we will assume instan-

taneous lane changes, so the merging point is well-defined. For real continuous changes, one can

define x to be the first location where a vehicle crosses the road marks separating the on-ramp from

the adjacent main-road lane.
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x = L/2 to arrive at

flate(x) =

{

2x
L2 if 0 ≤ x ≤ L,

0 otherwise.

Remark: A temporal dependency is modeled directly by a time-dependent ramp flow

Qrmp(t).

8.4 Continuity Equation II

A stationary traffic flow is characterized by zero partial time derivatives, particularly,

∂ρ(x, t)

∂ t
= 0,

∂Q(x, t)

∂ t
= 0.

This simplifies the continuity equation (8.17) for the effective (lane-averaged) flow

and density for the most general case including ramps and variable lane numbers to

dQ

dx
=−Q(x)

I(x)

dI

dx
+νrmp(x). (2)

By the condition of stationarity, the partial differential equation (8.17) for ρ(x, t) and

Q(x, t) with the independent variables x and t changes to an ordinary differential

equation (ODE) for Q as a function of x. Stationarity also implies that the traffic

inflow at the upstream boundary is constant, Q(x = 0, t) = Q0.

(i) We can solve the ODE (2) for νrmp = 0 by the standard method of separating the

variables:
dQ

Q
=−dI

I

dx

dx
=−dI

I
.

Indefinite integration of both sides with respect to the corresponding variable yields

lnQ = − ln I + C̃ with the integration constant C̃. Applying the exponentiation on

both sides results in

Q(x) =
C

I(x)

where C = exp(C̃). The new integration constant is fixed by the spatial initial con-

ditions C = I(x = 0)Q(x = 0) = I0Q0 where I0 is the number of lanes at x = 0. This

also determines the spatial dependency of the flow:

Q(x) =
I0Q0

I(x)
. (3)

Notice that this is consistent with the stationarity condition Qtot = I(x)Q(x) =
I0Q0 = const.

(ii) To describe an on-ramp or off-ramp merging to or diverging from a main road

with I lanes with a constant differential rate, we set

νrmp =
Qrmp

IL
= const,
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where Qrmp < 0 for off-ramps. Applying the condition of stationarity to the conti-

nuity equation (8.17) assuming a constant number I of lanes results in the ODE

dQ

dx
=

{

νrmp parallel to merging/diverging lanes,

0 otherwise,

with prescribed and constant Q(x = 0) = Q0 = Qtot/I at the upstream boundary. In

our problem with an off-ramp upstream of an on-ramp (which is the normal config-

uration at an interchange), we have

dQ

dx
=







−Qoff/(ILoff) if 300m ≤ x < 500m,
Qon/(ILon) if 700m ≤ x < 100m,
0 otherwise.

where Loff = 200m, and Lon = 300m. We calculate the solution to this ODE by

simple integration:

Q(x) =























Q0 if x < 300m,
Q0 −Qoff(x−300m)/(ILoff) if 300m ≤ x < 500m,
Q0 −Qoff/I if 500m ≤ x < 700m,
Q0 −Qoff/I +Qon(x−700m)/(ILon) if 700m ≤ x < 1,000m,
Q0 +(Qon −Qoff)/I if x ≥ 1,000m.

8.5 Continuity Equation III

The highway initially has I0 = 3 lanes, and a lane drop to 2 lanes over the effective

length L:

I(x) =







3 x < 0,
(

3− x
L

)

0 ≤ x ≤ L,
2 x > L.

Since the traffic demand (inflow) is constant, Qin =Qtot(0) = 3,600veh/h, and there

is no other explicit time dependence in the system, the traffic flow equilibrates to the

stationary situation characterized by ∂
∂ t

= 0:

dQ

dx
=−Q(x)

I(x)

dI

dx
.

1. The solution for the section with a variable lane number reads (cf. Eq. (3)):

Q(x) =
I0Q0

I(x)
=

Qtot

I(x)
.

Upstream and downstream of the lane drop, we have I(x)=const., i.e.,

Q(x) =
Qtot

I
.

In summary, this results in
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Q(x) =











Qtot/3 x < 0,
Qtot

3− x
L ,

0 ≤ x ≤ L

Qtot/2 x > L.

Furthermore, the hydrodynamic relation Q = ρV with V = 108km/h gives the

density

ρ(x) =
Q

V
=







11.11/km x < 0,
33.33
3− x

L

1
km

0 ≤ x ≤ L,

16.67/km x > L.

2. We insert the relation I(x) = 3− x/L and dI/dx = −1/L for the lane drop and

Q(x) = Qtot/(3− x/L) for the flow into the right-hand side of Eq. (2):

dQ

dx
=− Qtot

I2(x)

∂ I

∂x
=

Qtot

L
(

3− x
L

)2
.

The right-hand side can be identified with the searched-for effective ramp term:

νeff
rmp =

Qtot

L
(

3− x
L

)2
.

We determine the effective ramp flow corresponding to νeff
rmp(x) from the point

of view of the two remaining through lanes:

Qeff
rmp = 2

L
∫

0

νeff
rmp dx =

2Qtot

L

L
∫

0

dx
(

3− x
L

)2
=

2Qtot

L

(

1

3− x
L

)∣

∣

∣

∣

L

0

=
Qtot

3
= 1,200veh/h/lane.

Here, we used the indefinite integral

∫

dx
(

3− x
L

)2
=

L

3− x
L

.

8.6 Continuity Equation for Coupled Maps

We start from the formulation for global flows and densities:

∂ρ tot
k

∂ t
+

∂Qtot
k

∂x
= Iνrmp

By definition, we have ρ tot
k = Idown

k ρk. Assuming constant change rates for a small

discrete time interval ∆ t, the time derivative term becomes

∂ρ tot
k

∂ t
=

Idown
k (ρk(t +∆ t)−ρk(t))

∆ t
.
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Assuming constant flow changes over the length of the merging lane, the gradient

term becomes
∂Qtot

k

∂x
=

IdownQdown
k − I

up
k Q

up
k

∆xk

.

Finally, we simply have, by definition,

Iνrmp = Qrmp/Lrmp = Qrmp/∆x

Putting this together, we obtain

ρk(t +∆ t) = ρk(t)+
1

Idown∆xk

(

IupQ
up
k +Qrmp − IdownQdown

k

)

∆ t.

For the continuous steady-state condition, we just derive this expression setting
∂ρ tot

k

∂ t
= 0 while, in the discrete case, we just set the ρk(t +∆ t) = ρk(t) and multiply

Eq. (8.18) by Idown. In both cases, we obtain

0 = I
up
k Q

up
k − Idown

k Qdown
k +Qrmp

which is the flow balance given in the problem statement. This balance means that,

in steady-state conditions, the ramp flow is equal to the total outflow Qdown
k Idown

from a cell minus the total inflow Q
up
k Iup which is consistent with vehicle conserva-

tion.

8.7 Parabolic Fundamental Diagram

For the fundamental diagram

Q(ρ) = ρV (ρ) = ρV0

(

1− ρ

ρmax

)

,

the maximum flow (capacity per lane) Qmax is at a density ρC. We determine ρC, as

usual, by setting the gradient Q′(ρ) equal to zero:

Q′(ρC) =V0 −2
V0ρC

ρmax
= 0 ⇒ ρC =

1

2
ρmax.

Hence

Qmax = Q(ρC) =
ρmaxV0

4
.

Problems of Chapter 9

9.1 Propagation Velocity of a Shock Wave Free → Congested

The triangular fundamental diagram is semi-concave, i.e., the second derivative

Q′′
e (ρ) is non-positive, and the first derivative Q′

e(ρ) is monotonously decreasing.

This means, any straight line connecting two points on the fundamental diagram
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always lies below or, at most, on the fundamental diagram Qe(ρ). Consequently,

the slope c12 = (Q2 −Q1)/(ρ2 −ρ1) of this line cannot be greater than Q′(0) = V0

and not less than Q′(ρmax) = c proving the statement. Since this argumentation only

relies on the semi-concavity of the fundamental diagram, it can also be applied to

the parabolic fundamental diagram of Problem 8.7 leading to c12 ∈ [−V0,V0].

9.2 Driver Interactions in Free Traffic

There are not any in this model. If there were interactions, the followers would react

to the leaders, so the information of the shock wave would propagate at a lower

velocity than the vehicle speed, contrary to the fact.

9.3 Dissolving Queues at a Traffic Light

When the traffic light turns green, the traffic flow passes the traffic light in the

maximum-flow state. For the triangular fundamental diagram, the speed at the

maximum-flow state is equal to the desired speed and the transition from the waiting

queue (density ρmax) to the maximum-flow state propagates backwards at a velocity

w = −leff/T corresponding to the congested slope of the fundamental diagram. In

the microscopic picture, every follower starts a time interval T later than its leader

and instantaneously accelerates to V0 (Fig. 9.18). This suggests to interpret T as

the reaction time of each driver, so |c| is simply the distance between two queued

vehicles divided by the reaction time.

We emphasize, however, that the LWR model does not contain any reaction time.

Moreover, the above microscopic interpretation no longer holds for LWR models

with other fundamental diagrams. Therefore, another interpretation is more to the

point. As above, the driver instantaneously starts from zero to V0 which follows

directly from the sharp macroscopic shock fronts. However, the drivers only start

their “rocket-like” acceleration when there is enough time headway at V0. Thus,

|c| is the distance between two queued vehicles divided by the desired time gap T

in car-following mode. Similar considerations apply for concave fundamental dia-

grams (such as the parabola-shaped of Problem 8.7). This allows following general

conclusion:

The fact that not all drivers start simultaneously at traffic lights is not caused

by reaction times but by the higher space requirement of moving with respect

to standing vehicles: It simply takes some time for the already started vehicles

to make this space.

9.4 Total Waiting Time During One Red Phase of a Traffic Light

The total waiting time in the queue is equal to the number n(t) of vehicles waiting at

a given time, integrated over the duration of the queue: Defining t = 0 as the begin

of the red phase and x = 0 as the position of the stopping line, this means

τ tot =

τr+τdiss
∫

0

n(t)dt =

τr+τdiss
∫

0

xo(t)
∫

xu(t)

ρmax dx dt = ρmaxA,
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i.e., the total waiting time is equal to the jam density times the area of the queue in

space-time (cf. the following diagram).

u
p
τ r

−
 c

τ dissτ r

c
up

x

A

D

E

F

F’ tO

The area of the congested area is equal to the sum of the area of the two right-angled

triangles with the legs (τr,−cupτr) and (τdiss,−cupτr), respectively:

τ tot =
1

2
ρmax

(

−cupτ2
r − cupτrτdiss

)

.

To obtain the second right-angled triangle DEF’, we have shifted the point F of the

original triangle DEF to F’ which does not change the enclosed area. Furthermore,

we have the geometrical relation (cf. the figure again)

cupτr = (w− cup)τdiss,

i.e., τdiss = cupτr/(w− cup). Inserting this into the expression for τ tot finally gives

τ tot =
1

2
ρmaxτ2

r

cupw

cup −w

with

cup =
Qin

Qin/V0 −ρmax
, w =− 1

ρmaxT
.

The total waiting time increases with the square of the red time.

9.5 Jam Propagation on a Highway I: Accident

Subproblem 1. With the values given in the problem statement, the capacity per

lane reads

Qmax =
V0

V0T + leff

= 2,016veh/h.

The total capacity of the road in the considered driving direction without accident is

just twice that value:

C = 2Qmax = 4,032veh/h.
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This exceeds the traffic demand 3,024 veh/h at the inflow (x = 0), so no jam forms

before the accident, and only road section 1 exists. Since there are neither changes

in the demand nor road-related changes, traffic flow is stationary and the flow per

lane is constant:

Q1 =
Qin

2
= 1,512vehs/h, V1 =V0 = 28m/s, ρ1 =

Q1

V0
= 15veh/km.

This also gives the travel time to traverse the L = 10km long section:

ttrav =
L

V0
= 357s.

Subproblem 2. At the location of the accident, only one lane is open, so the bottle-

neck capacity

Cbottl = Qmax = 2,016veh/h

does not meet the demand any more, and traffic breaks down at this location. This

means, there are now three regions with different flow characteristics:

• Region 1, free traffic upstream of the congestion: Here, the situation is as in

Subproblem 1.

• Region 2, congested traffic at and upstream of the bottleneck.

• Region 3, free traffic downstream of the bottleneck.

From the propagation and information velocities of perturbations in free and con-

gested traffic flow, and from the fact that the flow but not the speed derives from a

conserved quantity, we can deduce following general rules:

Free traffic flow is controlled by the flow at the upstream boundary, congested

traffic flow and the traffic flow downstream of “activated” bottlenecks is con-

trolled by the bottleneck capacity.

For the congested region 2 upstream of the accident (both lanes are available),

this means

Q2 =
Cbottl

2
= 1,008veh/h.

To determine the traffic density, we invert the flow-density relation of the congested

branch of the fundamental diagram,6

ρ2 = ρcong(Q2) =
1−Q2T

leff

= 72.5veh/km.

Subproblem 3. To calculate the propagation velocity of the shock (discontinuous

transition free → congested traffic), we apply the shock-wave formula:

6 Beware: The fundamental diagram and derived quantities (as ρcong(Q)) are always defined for

the lane-averaged effective density and flow.
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cup = c12 =
Q2 −Q1

ρ2 −ρ1
=−8.77km/h.

Subproblem 4. After lifting the lane closure, the capacity is, again, given by

C = 2Qmax = 4,032veh/h, everywhere. In the LWR models, the outflow from con-

gestions is equal to the local capacity, so the new outflow from the congestion is

characterized by Q4 = C/2 = Qmax, V4 = V0, and ρ4 = Q4/V0 = 20veh/h. Fur-

thermore, the transition from regions 2 to 3 (downstream jam front) starts to move

upstream at a propagation velocity again calculated by the shock-wave formula:

cdown = c = c24 =
Q4 −Q2

ρ4 −ρ2
=−19.2km/h.

The jam dissolves if the upstream and downstream jam fronts meet. Defining t as

the time past 15:00 h, x as in the figure of the problem statement, and denoting the

duration of the bottleneck by τbottl = 30minutes, we obtain following equations of

motion for the fronts,

xup(t) = L+ cup t,

xdown(t) = L+ c(t − τbottl).

Setting these positions equal results in the time for complete jam dissolution:

tdissolve = τbottl
c

c− cup
= 3,312s.

The position of the last vehicle to be obstructed at obstruction time is equal to the

location of the two jam fronts when they dissolve:

tdissolve = L+ cup tdissolve = 1,936m.

Subproblem 5. In the spatiotemporal diagram, the congestion is restricted by three

boundaries:

• Stationary downstream front at the bottleneck position L = 10km for the times

t ∈ [0,τbottl],
• Moving downstream front for t ∈ [τbottl], tdissolve] whose position moves according

to xdown(t) = L+ c(t − τbottl),
• Moving upstream front for t ∈ [0, tdissolve] whose position moves according to

xup(t) = L+ cup t
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Subproblem 6. We follow the vehicle trajectory starting at time t = t0 = 1,800s at

the upstream boundary x = 0 by piecewise integrating it through the three regions

(cf. the diagram):

1. Traversing the inflow region: The vehicle moves at constant speed V0 resulting

in the trajectory x(t) =V0(t − t0).
2. Traversing the jam: To calculate the time tup of entering the jam, we intersect

the free-flow trajectory with the equations of motion xup(t) = L+ cup t for the

upstream front:

tup =
L+V0t0

V0 − cup
= 1,984s.

The corresponding location xup =V0(tup − t0) = 5,168m. Hence, the trajectory

reads

x(t) = xup + vcong(t − tup), vcong =
Q2

ρ2
= 3.86m/s.

3. Trajectory after leaving the jam: Since, at time tup, the bottleneck no longer ex-

ists, we calculate the exiting time by intersecting the trajectory calculated above

with the equations of motion of the moving downstream front. This results in

tdown =
L− xup − ct0 + vcongtup

vcong − c
= 2,403s,

xdown = xup +w(tdown − tup) = 6,783m.

After leaving the jam, the vehicle moves according to trajectory x(t) = xdown +
V0(t − tdown), so the vehicle crosses the location x = L = 10km at time

tend = tdown +
L− xdown

V0
= 2,518s.

In summary, we obtain for the total travel time to traverse the L = 10km long

section

τ = tend − t0 = 718.1s.

9.6 Jam Propagation on a Highway II: Uphill Grade and Lane Drop
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Subproblem 1. As in the previous problem, we calculate the capacities with the

capacity formula of the triangular fundamental diagram:

Qmax =
V0

V0T + leff

= 2,000veh/h,

QIII
max =

V03

V03T3 + leff

= 1,440veh/h.

Subproblem 2. For the total quantities, lane drops, gradients, and other flow-

conserving bottlenecks are irrelevant, and the continuity equation reads

∂ρ tot

∂ t
+

∂Qtot

∂x
=

∂Qtot

∂x
= 0.

Since the inflow is constant, Qin = 2,000veh/h, and less the minimum capacity

CIII = 2QIII
max = 2,880veh/h, this amounts to stationary free traffic flow in all four

regions I - IV with Qtot = Qin = const. From this information, we calculate the

effective flow of all regions by dividing by the respective number of lanes, and the

density by the free part of the fundamental diagram:

V

[km/h]

Qtot

[veh/h]

Q

[veh/h/lane]

ρ tot

[veh/km]

ρ
[veh/km/lane]

Region I 120 2,000 667 16.7 5.55

Region II 120 2,000 1,000 16.7 8.33

Region III 60 2,000 1,000 33.3 16.7

Region IV 120 2,000 1,000 16.7 8.33

Subproblem 3. Traffic breaks down if the local traffic flow is greater than the lo-

cal capacity. Thus, the jam forms at a location and at a time where and when this

condition is violated, for the first time. Since the capacities in the four regions are

given by 6,000, 4,000, 2,880, and 4,000 vehicles/h, respectively, the interface be-

tween regions II and III at x = 3km is the first location where the local capacity

can no longer meet the new demand Qin = 3,600veh/h. Traffic breaks down if the

information of the increased demand reaches x = 3km. This information propagates

through the regions I and II at cfree =V0 = 120km/h, or at 2 km per minute, so

xbreakd = 3km, tbreakd = 16:01:30 h.

Subproblem 4. To determine density, flow, and speed of congested traffic in the re-

gions I and II, we, again, adhere to the rule that free traffic flow is controlled by the

upstream boundary while the total flow of congested regions and of regions down-

stream of “activated” bottlenecks are equal to the bottleneck capacity at some earlier

times determined by the information propagation velocities cfree and w, respectively.

Furthermore, densities inside congestions are calculated with the congested branch

of the fundamental diagram while the free branch is used in all other cases. Denoting

with regions Ib and IIb the congested sections of regions I and II, respectively, and
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with regions Ia and IIa the corresponding free-flow sections, this leads to following

table for the traffic-flow variables:

V

[km/h]

Qtot

[veh/h]

Q

[veh/h/lane]

ρ tot

[veh/km]

ρ
[veh/km/lane]

Ia (I = 3) 16 3,600 1,200 30 10

Ib (I = 3) 120 2,880 960 180 60

IIa (I = 2) 36 3,600 1,800 30 15

IIb (I = 2) 120 2,880 1,440 80 40

III (I = 2) 60 2,880 1,440 48 24

IV (I = 2) 120 2,880 1,440 24 12

Notice that the local vehicle speed inside congested two-lane regions is more than

twice that of three-lane regions.7

Subproblem 5. To calculate the propagation velocities of the upstream jam front in

the regions I and II, we use, again, the shock-wave formula together with the table

of the previous subproblem:

vg =
∆Q

∆ρ
=

{

−240/(60−10)km/h =−4.8km/h Interface Ia-Ib, situation (i),

−360/(40−15)km/h =−14.4km/h Interface IIa-IIb, situation (ii).

9.7 Toll Plaza

Subproblem 1. The free-flow speed V0 = 25m/s is given directly. With the relation

w = −leff/T between the wave speed and the effective length leff = 1/ρmax, the

triangular FD has a maximum flow

Qmax =
V0

V0T + leff

=
V0

leff

(

1− V0
w

)

which can be solved for the effective vehicle length:

leff =
1

ρmax
=

V0

Qmax

(

1− V0
w

) = 8.33m.

Then, the maximum density ρmax = 1/leff = 120veh/km and the time gap T =
−leff/w = 1.67s can be calculated easily.

Subproblem 2. With a serving capacity of 300 veh/h per booth, the total serving

capacity is CB = 4,500veh/h which is greater than the inflow Qin = 4,200veh/h,

so no breakdown occurs.

7 When being stuck inside jams without knowing the cause, this allows to draw conclusions about

the type of bottleneck, e.g., whether it is a three-to-two, or three-to-one lane drop.
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Subproblem 3. With the surge in the demand, the bottleneck capacity Cb = 4,500veh/h

does no longer meet the demand Qin = 5,400veh/h and a breakdown occurs. In

LWR models this means that a shockwave appears. Because the drivers always use

the shortest line, the upstream jam front free → congested has the same location xup

on all lanes, the congested flow per lane is given by the servicing capacity and the

congested density per lane by the inverse of the congested branch of the triangular

fundamental diagram:

Qcong = 300veh/h = 1/12veh/s,

ρcong = ρmax(1−QcongT ) = ρmax +Qcong/w = 103.3veh/km.

The free flow in the plaza upstream of the jam front distributes on all 15 lanes, hence

Qfree = Qin15 = 360veh/h, ρfree =
Qfree

V0
= 4veh/km.

The time until the toll plaza of length L = 200m fills up, can be calculated in two

means. (i) Vehicle conservation:

Tfill =
∆n

∆Q
=

15(ρcong −ρfree)L

Qin −Cb

= 1192s.

(ii) With the shockwave formula:

cup =
Qcong −Qfree

ρcong −ρfree

=−0.1678m/s, Tfill =
L

−cup
= 1192s.

Subproblem 4. Average speed in the congested lines in the plaza: Vcong =Qcong/ρcong =
0.8065m/s, queuing time L/Vcong = 248s.

Subproblem 5. Calculation as in Subproblem 3, only with 3 instead of 15 lanes,

Qcong =
4,500veh/h

3
= 1,500veh/h, Qfree =

5,400veh/h

3
= 1,800veh/h,

ρcong = ρmax(1−QcongT ) = 36.7veh/km, ρfree =
Qfree

V0
= 25m/s

results in a congested speed Vcong = Qcong/ρcong = 11.36m/s and a propagation

velocity of the upstream front of cup = w = −5m/s. Notice that we do not even

need to use the shockwave formula to calculate cup because the free section is at

capacity, i.e., at the tip of the triangular FD, hence cup = w.

Subproblem 6. For ideal lane synchronization and diverging to the new lanes, and

assuming x = 0 at the beginning of the widening, the fractional lane number at

position x is given by

I(x) = 3+
12x

Lw
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where Lw = 160m. Then, the position dependent congested speed in the widening

section is given by

V (x) =
Q

ρcong(Q)
=

Cb

I(x)

ρmax

(

1− CbT

I(x)

) =
Cb

ρmax (I(x)−CbT )
.

Subproblem 7. The travel time through the fully congested widening section is the

space integral over the inverse of the speed,

Tw =
∫ Lw

x=0

dx

V (x)

=
∫ Lw

x=0

ρmax (I(x)−CbT )

Cb

dx

= −ρmaxT Lw +
∫ Lw

x=0

ρmax

Cb

(

3+
12

Lw

x

)

dx

= ρmaxLw

(

9

Cb

−T

)

= 106.24s.

9.8 Diffusion-Transport Equation

Inserting the initial conditions into Eq. (9.57) results in

ρ(x, t) = ρ0

L
∫

0

1√
4πDt

exp

[−(x− x′− c̃t)2

4Dt

]

dx′.

Since the integrand is formally identical to the density function fN(x
′) of a (µ ,σ2)

Gaussian distribution (with space and time dependent expectation µ(t) = x− c̃t and

variance σ2(t) = 2Dt), we can the above integral write as8

ρ(x, t) = ρ0

L
∫

0

f
(µ ,σ2)
N (x′)dx′.

Since the integrand is the density of a Gaussian distribution function, the integral

itself can be expressed in terms of the (cumulated) Gaussian or normal distribution

FN(x) =

x
∫

−∞

fN(x
′)dx′,

resulting in

ρ(x, t) = ρ0

[

F
(µ ,σ2)
N (L)−F

(µ ,σ2)
N (0)

]

.

8 When doing the integral, watch out that the variable to be integrated is x′ rather than x.
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Since this is no elementary function, we express the result in terms of the tabulated

standard normal distribution Φ(x) = F
(0,1)
N (x) by using the relation F(x) = Φ((x−

µ)/σ) taught in statistics courses. With µ = x− c̃t and σ2(t) = 2Dt, this results in

ρ(x, t) = ρ0

[

Φ

(

L−µ

σ

)

−Φ

(−µ

σ

)]

= ρ0

[

Φ

(

L− x+ c̃t√
2Dt

)

−Φ

(−x+ c̃t√
2Dt

)]

= ρ0

[

Φ

(

x− c̃t√
2Dt

)

−Φ

(

x− c̃t −L√
2Dt

)]

,

In the last line, we have used the symmetry relation Φ(x) = 1−Φ(−x). In the limit-

ing case of zero diffusion, the two standard normal distribution functions degenerate

to jump functions with jumps at the positions c̃t and L+ c̃t. This is consistent with

the analytic solution of the triangular LWR model, ρ(x, t) = ρ0(x− c̃t) where ρ0(x)
denotes the initial density given in the problem statement. For finite diffusion con-

stants, the initially sharp density profiles smear out over time (cf. Fig. 9.29).

Problems of Chapter 10

10.1 Ramp Term of the Acceleration Equation

Macroscopically, the total derivative dV
dt

of the local speed denotes the rate of change

of the average speed of all n = ρ ∆x vehicles in a (small) road element of length ∆x

comoving with the local speed V ,

dV

dt
=

dE (vi)

dt
=

d

dt

(

1

n

n

∑
i=1

vi

)

. (4)

Without acceleration of single vehicles ( dvi
dt

= 0), the rate of change is solely caused

by vehicles entering or leaving this road element at a speed Vrmp 6=V (cf. Fig. 10.5).

Assuming that the position of the merging vehicles is uniformly distributed over the

length Lrmp of the merging region, the rate of change of the vehicle number is given

by
dn

dt
= q = Qrmp

∆x

Lrmp
(5)

whenever the moving road element is parallel to the merging section of an on-ramp.

When evaluating the time derivative (4), we notice that both the prefactor 1
n

and the

sum itself depend explicitly on time. Specifically,

d

dt

(

1

n

)

=− q

n2
,

d

dt

(

∑
i

vi

)

= qVrmp.
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The second equation follows from the problem statement that all vehicles enter the

road at speed Vrmp and no vehicles (including the ramp vehicles) accelerate (vi =
const). Using these relations and ∑i vi = nV , we can write the rate of change of the

local speed as

Armp =
dE (vi)

dt
=

d

dt

(

1

n(t)

n(t)

∑
i=1

vi

)

= −qnV

n2
+

qVrmp

n

=
q(Vrmp −V )

n

=
Qrmp∆x(Vrmp −V )

nLrmp

=
Qrmp(Vrmp −V )

IρLrmp
.

In the last step, we have used n = Iρ ∆x.

10.2 Kinematic Dispersion

Subproblem 1. The lane-averaged local speed is given by

V =
1

ρ1 +ρ2
(ρ1V1 +ρ2V2) .

First, we calculate the initial speed variance across the lanes (k = 1 and 2 for the left

and right lanes, respectively):

σ2
V (x,0) = E

(

(Vk(x,0)−V )2
)

=
ρ1(V1 −V )2 +ρ2(V2 −V )2

ρ1 +ρ2
,

or, for the special case ρ1 = ρ2,

σ2
V (x,0) =

(V1 −V2)
2

4
= 100(m/s)2 = const.

Notice that these expressions give the true spatial (instantaneous) variance. In con-

trast, when determining the time mean variance at a given location from data

of a stationary detector station, we would obtain for lane 1 the weighting factor

Q1/(Q1 +Q2) = 1/3 instead of the correct value ρ1/(ρ1 +ρ2) = 1/2 resulting in a

biased estimate for the true variance (cf. Chapter 5).

Subproblem 2. The kinematic part Pkin = ρσ2
V of the pressure term leads to a fol-

lowing contribution of the local macroscopic acceleration,
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Akin =− 1

ρ

∂P

∂x
=− 1

ρ

d

dx

(

ρ(x, t)σ2
V

)

=

{

0.01s−2

ρ 0 ≤ x ≤ 100m,

0 otherwise.

(The factor 0.01s−2 result from the gradient
∂ρ
∂x

= 10−4 m−2 multiplied by the vari-

ance 100(m/s)2.) Consequently, a finite speed variance implies that a negative den-

sity gradient leads to a positive contribution of the macroscopic acceleration. This

will be discussed at an intuitive level in the next subproblem.

Subproblem 3. If there is a finite variance σ2
V and a negative density gradient (a

transition from dense to less dense traffic), then the vehicles driving faster than the

local speed V go from the region of denser traffic to the less dense region while the

slower vehicles are transported backwards (in the comoving system!) to the denser

region. Due to the density gradient, the net inflow of faster vehicles is positive and

that of slower vehicles negative. This is illustrated in the following figure, the upper

graphics of which depicting the situation in the stationary system, and the lower

one in a system comoving with V . As a result, the averaged speed V is increasing

although not a single vehicle accelerates while the total number of vehicles in the

element, i.e., the density, is essentially constant.

x=0 x=100 m

144 km/h

72 km/h

x=V  t x=V  t + 100 m

− 36 km/h

36 km/h

0 0

Stationary
system

Comoving
system

Subproblem 4. Assuming that higher actual speeds are positively correlated with

higher desired speeds, the mechanism described in Subproblem 3 leads to a segre-

gation of the desired speeds such that the fast tail of the desired speed distribution

tends to be found further downstream than the slow tail. This is most conspicu-

ous in multi-lane queues of city traffic waiting behind a red traffic light when the

light turns green: If there is one lane with speeding drivers, these drivers will reach

first a given position downstream of the stopping line of the traffic light. At this

moment, the traffic composition at this point consists exclusively of speeding driv-

ers. Macroscopically, this can only be modeled by multi-class macroscopic mod-

els where the desired speed V0(x, t) becomes another dynamical field with its own

dynamical equation. Because of their complexity, such Paveri-Fontana models are

rarely used.

10.3 Modeling Anticipation by Traffic Pressure

Subproblem 1. Since, by definition, the traffic density is equal to the number of

vehicles per distance, one vehicle distance, i.e., the distance headway d, can be

expressed by the density:
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d =
1

ρ((x+ xa)/2, t)
≈ 1

ρ(x, t)
.

The first expression to the right of the equal sign is accurate to second order in xa −
x = d. The second expression 1/ρ(x, t) is accurate to first order which is sufficient

in the following.

Subproblem 2. We expand the nonlocal part Ve(ρ(xa, t)) = Ve(ρ(x+ d, t)) of the

adaptation term to first order around x:

Ve(ρ(x+d, t)) = Ve(ρ(x, t))+
dVe(ρ(x, t))

dx
d +O(d2)

= Ve(ρ(x, t))+
1

ρ

dVe(ρ(x, t))

dx
+O(d2) .

Inserting this into the speed adaptation term results in

(

dV

dt

)

relax+antic

≈ Ve(ρ(x, t))−V (x, t)

τ
+

1

ρτ

dVe(ρ(x, t))

dx

!
=

Ve(ρ(x, t))−V (x, t)

τ
− 1

ρ

dP(x, t)

dx
,

where, in the last step, we set the result equal to the general expression for the

acceleration caused by P. The comparison yields

P(x, t) =−Ve(ρ(x, t))

τ
.

Subproblem 3. According to the problem statement, the density profile obeys (with

ρ0 = 20veh/km = 0.02veh/m, c = 100veh/km2 = 10−4 veh/m2)

ρ(x, t) =







ρ0 x < 0,
ρ0 + cx 0 < x ≤ 200m,
2ρ0 x > 200m.

(6)

(i) Acceleration by anticipation when using the original relaxation term:

(

dV

dt

)

relax

=
Ve(ρ(x+1/ρ(x, t), t))−Ve(ρ(x, t))

τ
,

where Ve(ρ) = V0(1− ρ/ρmax) is given in the problem statement (such a relation

is rather unrealistic; it serves to show the principle in the easiest possible way).

Inserting Eq. (6), we obtain
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(

dV

dt

)

relax

=























0 x ≤−1/ρ0 or x > 200m,
−V0c
τρmax

(

1
ρ0

+ x
)

− 1
ρ0

< x ≤ 0,
−V0c

τρmaxρ 0 < x ≤ 200m− 1
2ρ0

,
−V0

τρmax
(2ρ0 −ρ) 200m− 1

2ρ0
< x ≤ 200m,

where the criterion separating the last two cases is only approximately valid.

(ii) Expressing the acceleration contribution by the pressure term, we obtain

(

dV

dt

)

pressure

=

{

0 x ≤ 0 or x > 200m,
−V0c

τρmaxρ 0 < x ≤ 200m− 1
2ρ0

.

Except for the transition regions at the beginning and end of the density gradient,

this agrees with the acceleration derived from the original relaxation term. How-

ever, in contrast to the pressure term, the nonlocal anticipation term provides “true”

anticipation everywhere, including the region −1/ρ0 ≤ x < 0 where the local ap-

proximation by the pressure term does not “see” anything. In summary, the nonlocal

route to modeling anticipation is more robust.

10.4 Steady-State Speed of the GKT Model

In the steady state on homogeneous roads, all spatial and temporal derivatives van-

ish, so the GKT acceleration equation (10.25) reduces to V = V ∗
e . Furthermore,

the homogeneity associated with the steady state implies Va = V and ρa = ρ , and

the Boltzmann factor is given by B(0) = 1. Using these conditions and the defini-

tion (10.28) for V ∗
e , we can write the condition V =V ∗

e as

V

V0
= 1− α(ρ)

α(ρmax)

(

ρaV T

1−ρa/ρmax

)2

.

This is a quadratic equation in V . Its positive root reads

V =Ve(ρ) =
Ṽ 2

2V0



−1+

√

1+
4V 2

0

Ṽ 2





with the abbreviation

Ṽ =

√

α(ρmax)

α(ρ)

(1−ρ/ρmax)

ρT
.

For densities near the maximum density we have Ṽ ≪V0 and α(ρ)≈α(ρmax). With

the micro-macro relation s = 1/ρ −1/ρmax, we can write the steady-state speed in

this limit as

Ve(ρ)≈ Ṽ ≈ (1−ρ/ρmax)

ρT
=

s

T
.
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Notice that this implies that T has the meaning of a (bumper-to-bumper) time gap

in heavily congested traffic.

10.5 Flow-Conserving Form of Second-Order Macroscopic Models

We start by setting V = Q/ρ in the continuity equation:

∂ρ

∂ t
+

∂Q

∂x
=−Q

I

dI

dx
+νrmp.

Multiplying the acceleration equation (10.11) by ρ and inserting V = Q/ρ gives the

intermediate result

ρ
∂V

∂ t
+Q

∂V

∂x
=

ρV ∗
e −Q

τ
− ∂P

∂x
+

∂

∂x

(

µ
∂ (Q/ρ)

∂x

)

+ρArmp.

Now we substitute the time derivative of the local speed by the time derivative

of the flow and replace the resulting time derivative of the density with the flow-

conservative continuity equation. The left-hand side of the last equation then reads

ρ
∂V

∂ t
+Q

∂V

∂x
=

∂Q

∂ t
−V

∂ρ

∂ t
+Q

∂V

∂x

=
∂Q

∂ t
+V

∂Q

∂x
+V

Q

I

dI

dx
−V νrmp +Q

∂V

∂x

=
∂Q

∂ t
+

∂ (QV )

∂x
+V

Q

I

dI

dx
−V νrmp.

Substituting again V = Q/ρ and grouping the spatial derivatives together, we obtain

∂Q

∂ t
+

∂

∂x

[

Q2

ρ
+P−µ

∂

∂x

(

Q

ρ

)]

=
ρV ∗

e −Q

τ
− Q2

ρI

dI

dx
+

Qνrmp

ρ
+ρArmp.

10.6 Numerics of the GKT Model

Neglecting the pressure term (its maximum relative influence is of the order of√
α = 10%), the first CFL condition (10.46) for the convective numerical instability

reads

∆ t <
∆x

V0
= 1.5s . (7)

Since the GKT model does not contain diffusion terms, the second CFL condition

is not relevant. However, the relaxation instability must be tested: The characteristic

equation det(L− λ1) = 0 for the eigenvalues of the matrix L of the linear equa-

tion (10.42) reads

−λ (L22 −λ ) =−λ

[

1

τ

(

−1+ρ
∂Ṽe(ρ ,Q)

∂Q

)

−λ

]

= 0

resulting in the eigenvalues
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λ1 = 0, λ2 =−1

τ

(

1−ρ
∂Ṽe(ρ ,Q)

∂Q

)

,

where

Ṽe(ρ ,Q) =V ∗
e (ρ ,Q,ρ ,Q) =V0

[

1− α(ρ)

αmax

(

QeT

1−ρ/ρmax

)2
]

.

With this result, the condition ∆ t < |λ−1
2 | to avoid relaxation instability becomes

∆ t <
τ

1+ 2α(ρ)V0ρQe

αmax

(

T
1−ρ/ρmax

)2
,

i.e., Eq. (10.51) of the main text. In the limit of high densities ρ → ρmax we make

use of the approximate relation (cf. Problem 10.4)

Ve(ρ)≈
1

T

(

1

ρ
− 1

ρmax

)

to arrive at

∆ t <
τ(ρ)

1+2
V0
Ve

,

which is Eq. (10.52) of the main text. Inserting ρmax,sim = 0.1m−1 from the problem

statement and Ve(ρmax,sim) = 4.14m/s (watch out for the units! If in doubt, always

use the SI units m, kg, and s), we finally obtain

∆ t <
1

|λ2|
= 1.32s. (8)

The definitive limitation of the time step is given by the more restrictive one of the

conditions (7) and (8), so ∆ t < 1.32s.

The expression (10.57) for the numerical diffusion of both equations at V =
20m/s and ∆ t = 1s (i.e., the conditions for linear numerical stability are satisfied)

evaluates to

Dnum =V
∆x

2

(

1−V
∆ t

∆x

)

= 300m/s2.

This is only about 1/30 of the (real) diffusion introduced to the Kerner-Konhäuser

model by the term proportional to Dv (assuming standard parameterization).

Problems of Chapter 11

11.1 Dynamics of a Single Vehicle Approaching a Red Traffic Light
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Subproblem 1 (parameters). The free acceleration is the same as that of the OVM.

Hence, v0 is the desired speed and τ the adaptation time. If the model decelerates,

it does so with the deceleration b. Since, at this deceleration, the kinematic braking

distance to a complete stop is given by ∆xbrake = v2/(2b), the vehicle stops at a

distance s0 to the (stopping line of) the red traffic light. This explains the meaning

of the last parameter. Notice that, in this model, vehicles would follow any leading

vehicle driving at a constant speed vl < v0 at the same gap s0, i.e., the model does not

include a safe gap. Nor does it contain a reaction time. The model is accident-free

with respect to stationary obstacles, but not when slower vehicles are involved.

Subproblem 2 (free acceleration phase). Here, the first condition of the model ap-

plies, so we have to solve the ordinary differential equation (ODE) for the speed

dv

dt
=

v0 − v

τ
with v(0) = 0.

The exponential ansatz eλ t for the homogeneous part dv
dt
=−v/τ gives the solvabil-

ity condition λ = 1/τ . Furthermore, the general solution for the full inhomogeneous

(ODE) reads

v(t) = Ae−t/τ +B.

The asymptotic v(∞) = B = v0 yields the inhomogeneous part B. Determining the

integration constant A by the initial condition v(0) = A+B = A+ v0 = 0 gives A =
−v0, so the speed profile reads

v(t) = v0

(

1− e−
t
τ

)

.

Once v(t) is known, we determine the trajectory x(t) by integrating over time. With

x(0) = 0, we obtain

x(t) =

t
∫

0

v(t ′)dt ′ = v0

t
∫

0

(

1− e−
t′
τ

)

dt ′

= v0

[

t ′+ τe−
t′
τ

]t ′=t

t ′=0

= v0t + v0τ
(

e−
t
τ −1

)

.

By identifying parts of this expression with v(t), this simplifies to

x(t) = v0t − v(t)τ .

Finally, to obtain the acceleration profile, we either differentiate v(t), or insert v(t)
into the right-hand side of the ODE. In either case, the result is

v̇ =
v0 − v

τ
=

v0

τ
e−1/τ .
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Subproblem 3 (braking phase). The red traffic light represents a standing virtual

vehicle of zero length at the stopping line, so ∆v = v. This phase starts at a distance

sc = s0 +
v2

2b
= 50.2m

to the stopping line, and the vehicle stops at a distance s0 to this line.

Subproblem 4 (trajectory). For the accelerating phase, the trajectory has already

been calculated. The deceleration phase begins at the location

xc = L− sc = L− s0 −
v2

2b
≈ 450m.

To approximately determine the time tc at which the deceleration phase begins, we

set v(tc) = v0 to obtain

xc(tc) = v0tc − v(tc)τ ≈ v0(tc − τ) ⇒ tc =
xc

v0
+ τ = 32.4s+5.0s = 37.4s.

With the braking time v0/b, this also gives the stopping time

tstop = tc +
v0

b
= 44.3s.

In summary, the speed profile v(t) can be expressed by (cf. the graphics below)

v(t) =







v0

(

1− e−t/τ
)

0 ≤ t < tc,
v0 −b(t − tc) tc ≤ t ≤ tstop,
0 otherwise.
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11.2 OVM Acceleration on an Empty Road

(i) The maximum acceleration amax = v0/τ is reached right at the beginning, t = 0.

(ii) Prescribing amax = 2m/s2 and a desired speed v0 = 120km/h determines the

speed relaxation time by

τ =
v0

amax
= 16.7s.

(iii) We require that, at a time t100 to be determined, the speed should reach the value

v100 = 100km/h:

v(t100) = v100 = v0

(

1− e−
t100

τ

)

.
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Solving this condition for t100 gives

v100

v0
= 1− e−

t100
τ ⇒ t100 =−τ ln

(

1− 100

120

)

≈ 29.9s.

11.3 Optimal Velocity Model on a Ring Road

The problem describes a situation with evenly spaced identical vehicles on a ring

road which, initially, are at rest. This means, traffic flow is not stationary (since the

initial gaps are greater than the minimum gap) but homogeneous: Since the road is

homogeneous, and the vehicle fleet consists of identical vehicles, the homogeneity

imposed by the initial conditions is not destroyed over time. For microscopic mod-

els, homogeneity implies that the dynamics depend neither on x nor on the vehicle

index i. So, dropping i, the OVM reads

dv

dt
=

vopt(s(0))− v

τ
.

The solution to this ODE is analogously to Problem 11.2, only v0 is replaced by the

steady-state speed ve = vopt(s(0)).

11.4 Full Velocity Difference Model

General plausibility arguments require the steady-state speed vopt(s) to approach the

desired speed v0 when the gap s tends to infinity. However, for an arbitrarily large

distance to the red traffic light modeled by a standing virtual vehicle (∆v = v), the

FVDM vehicle accelerates according to

v̇ =
v0 − v

τ
− γv =

v0

τ
−
(

1

τ
+ γ

)

v.

From this it follows that the acceleration v̇ becomes zero for a terminal speed

v∗ =
v0

1+ γτ
.

This is the maximum speed an initially standing FVDM vehicle can reach in this

situation. It is significantly lower than v0. For the parameter values of the problem

statement, v∗ = 13.5km/h which agrees with Fig. 11.6.

11.5 A Simple Model for Emergency Braking Maneuvers

Subproblem 1 (identifying the parameters). Tr = denotes the reaction time, and

bmax is the maximum deceleration in emergency cases.

Subproblem 2 (braking and stopping distance). Assuming a fixed reaction timer Tr

and a constant deceleration bmax in the braking phase, elementary kinematic rela-

tions yield following expressions for the braking and stopping distances sB(v) and

sstop(v) = vTr + sB(v), respectively:
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sB(v) =
v2

2bmax
, sstop(v) = vTr + sB(v)

with the numerical values

v = 50km/h : sB(v) = 12.1m, sstop(v) = 25.9m,

v = 70km/h : sB(v) = 23.6m, sstop(v) = 43.1m.

Subproblem 3 (emergency braking). At first, we determine the initial distance such

that a driver driving at v1 = 50km/h just manages to stop before hitting the child:

s(0) = sstop(v1) = 25.95m.

Now we consider a speed v2 = 70km/h but the same initial distance s(0) = 25.95m

as calculated above. At the end of the reaction time, the child is just

s(Tr) = s(0)− v2Tr = 6.50m

away from the front bumper. Now, the driver would need the additional braking

distance sB(v2) = 23.6m for a complete stop. However, only 6.50 m are available

resulting in a difference ∆s = 17.13m. With this information, the speed at collision

can be calculated by solving ∆s = (∆s)B(v) = v2/(2bmax) for v, i.e.,

vcoll =
√

2bmax∆s = 16.56m/s = 59.6km/h.

Remark: This problem stems from a multiple-choice question of the theoretical

exam for a German driver’s licence. The official answer is 60 km/h.

Problems of Chapter 12

12.1 Conditions for the Microscopic Fundamental Diagram

The plausibility condition (12.5) is valid for any speed vl of the leading vehicle. This

also includes standing vehicles where Eq. (12.5) becomes f (s,0,0) = 0 for s ≤ s0.

This corresponds to the steady-state condition ve(s) = 0 for s ≤ s0.

Conditions (12.1) and (12.2) are valid for any speed vl of the leader as well,

including the steady-state situation vl = v or ∆v = 0. For the alternative acceleration

function ã(s,v,∆v), this means

∂ f̃ (s,v,0)

∂ s
≥ 0,

∂ f̃ (s,v,0)

∂v
< 0.

Along the one-dimensional manifold of steady-state solutions {ve(s)} for s ∈ [0,∞[,
we have f̃ (s,ve(s),0) = 0, so the differential change d f̃ along the equilibrium curve

ve(s) must vanish as well:
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d f̃ =
∂ f̃ (s,ve(s),0)

∂ s
ds+

∂ f̃ (s,ve(s),0)

∂v
v′e(s)ds = 0,

hence

v′e(s) =
−∂ f̃ (s,v,0)/∂ s

∂ f̃ (s,v,0)/∂v
≥ 0.

If the leading vehicle is outside the interaction range, we have v′e(s) = 0 (second

condition of Eq. (12.2)). Finally, the condition lim
s→∞

ve(s) = v0 follows directly from

the second part of condition (12.1).

12.2 Rules of Thumb for the Safe Gap and Braking Distance

Subproblem 1. One mile corresponds to 1.609 km. However, the US rule does not

give explicit values for a vehicle length. Here, we assume 15ft = 4.572m. In any

case, the gap s increases linearly with the speed v, so the time gap T = s/v is inde-

pendent of speed. Implementing this rule, we obtain

T =
s

v
=

15ft

10mph
=

4.572m

16.09km/h
=

4.572m

4.469m/s
= 1.0s.

Notice that, in the final result, we rounded off generously. After all, this is a rule of

thumb and more significant digits would feign a non-existent precision.9 Notice that

this rule is consistent with typically observed gaps (cf. Fig. 5.7).

Subproblem 2. Here, the speedometer reading is in units of km/h, and the space gap

is in units of meters. Again, the quotient, i.e., the time gap T is constant and given

by (watch out for the units)

T =
s

v
=

1
2
m
(

v
km/h

)

v
=

1
2
m

km/h
=

0.5h

1,000
=

1,800s

1,000
= 1.8s.

Subproblem 3. The kinematic braking distance is s(v) = v2/(2b), so the cited rule

of thumb implies that the braking deceleration does not depend on speed. By solving

the kinematic braking distance for b and inserting the rule, we obtain (again, watch

out for the units)

b =
v2

2s
=

v2

0.02m

(

km

hv

)2

=
50

3.62
m/s2 = 3.86m/s2.

For reference, comfortable decelerations are below 2m/s2 while emergency braking

decelerations on dry roads with good grip conditions can be up to 10m/s2, about

6m/s2 for wet conditions, and less than 2m/s2 for icy conditions. This means, the

above rule could lead to accidents for icy conditions but is okay, otherwise.

12.3 Reaction to Vehicles Merging into the Lane

9 There is also a more conservative variant of this rule where one should leave one car length every

five mph corresponding to the “two-second rule” T = 2.0s.
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Reaction for the IDM. For v = v0/2, the IDM steady-state space gap reads

se(v) =
s0 + vT

√

1−
(

v
v0

)δ
=

s0 +
v0T

2
√

1−
(

1
2

)δ
.

The prevailing contribution comes from the prescribed time headway (for s0 = 2m

and δ = 4, the other contributions only make up about 10%). This problem as-

sumes that the merging vehicle reduces the gap to the considered follower to half

the steady-state gap, s = se/2 = v0T/4, while the speed difference remain zero. The

new IDM acceleration of the follower (with a = 1m/s2 and δ = 4) is therefore

v̇IDM = a

[

1−
(

v

v0

)δ

−
(

s0 + vT

s

)2
]

(v=v0/2,s=se/2)
= a

[

1−
(

1

2

)δ

−
(

s0 + v0T/2

se/2

)2
]

se(v)=se(v0/2)
= −3a

[

1−
(

1

2

)δ
]

=−45

16
m/s2 =−2.81m/s2.

Reaction for the simplified Gipps’ model. For this model, the steady-state gap in the

car-following regime reads se(v) = v∆ t. Again, at the time of merging, the merging

vehicle has the same speed v0/2 as the follower, and the gap is half the steady-state

gap, s = (v∆ t)/2 = v0∆ t/4. The new speed of the follower is restricted by the safe

speed vsafe:

v(t +∆ t) = vsafe =−b∆ t +

√

b2(∆ t)2 +
(v0

2

)2

+
bv0∆ t

2
= 19.07m/s.

This results in an effective acceleration

(

dv

dt

)

Gipps

=
v(t +∆ t)− v(t)

∆ t
≈−0.93m/s2.

We conclude that the Gipps’ model describes a more relaxed driver reaction com-

pared to the IDM. Notice that both the IDM and Gipps’ model would generate sig-

nificantly higher decelerations for the case of slower leading vehicles (dangerous

situation).

12.4 The IDM Braking Strategy

A braking strategy is self-regulating if, during the braking process, the kinematically

necessary deceleration bkin = v2/(2s) approaches the comfortable deceleration b.

In order to show this, we calculate the rate of change of the kinematic deceleration

(applying the quotient and chain rules of differentiation when necessary) and set ṡ =
−v and v̇ =−b2

kin/b =−v4/(4bs2), afterwards. This eventually gives Eq. (12.27) of
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the main text:

dbkin

dt
=

d

dt

(

v2

2s

)

=
4vsv̇−2v2ṡ

4s2

=
v3

2s2

(

1− v2

2sb

)

=
vbkin

sb

(

b−bkin

)

,

12.5 Analysis of a Microscopic Model

Subproblem 1 (parameters). For interaction-free accelerations, vsafe > v0, so vsafe

is not relevant. Hence v0 denotes the desired speed, and a the absolute value of

the acceleration and deceleration for the cases v < v0 and v > v0, respectively. The

steady-state conditions s = const. and v = vl = ve = const. give

ve = min(v0,vsafe).

Without interaction, vsafe > v0, so ve = v0. With interactions, the safe speed becomes

relevant and the above condition yields

ve = vsafe =−aT +
√

a2T 2 + v2
e +2a(s− s0)

which can be simplified to

s = s0 + veT.

Thus, s0 is the minimum gap for v = 0, and T the desired time gap. The model

produces a deceleration −a not only if v > v0 (driving too fast in free traffic) but

also if v > vsafe (driving too fast in congested situations). Furthermore, the model

is symmetrical with respect to accelerations and decelerations. Obviously, it is not

accident free.

Subproblem 2 (steady-state speed). We have already derived the steady-state con-

dition

ve(s) = min

(

v0,
s− s0

T

)

.

Macroscopically, this corresponds to the triangular fundamental diagram

Qe(ρ) = min

(

v0ρ ,
1−ρleff

T

)

where leff = 1/ρmax = l + s0. The capacity per lane is given by Qmax = (T +
leff/v0)

−1 = 1,800veh/h at a density ρC = 1/(leff + v0T ) = 25/km. For further

properties of the triangular fundamental diagram, see Section 9.6.

Subproblem 3. The acceleration and braking distances to accelerate from 0 to

20m/s or to brake from 20m/s to 0, respectively, are the same:



694 Solutions to the Problems

sa = sb =
v2

0

2a
= 200m.

At a minimum gap of 3 m and the location xstop = 603m of the stopping line of

the traffic light, the acceleration takes place from x = 0 to x1 = 200m, and the

deceleration from x2 = 400m to x3 = 600m. The duration of the acceleration and

deceleration phases is v0/a = 20s while the time to cruise the remaining stretch

of 200 m at v0 amounts to 10 s. This completes the information to mathematically

describe the trajectory:

x(t) =







1
2
at2 t ≤ t1 = 20s,

x1 + v0(t − t1) t1 < t ≤ t2 = 30s,
x2 + v0(t − t2)− 1

2
a(t − t2)

2 t2 < t ≤ t3 = 50s,

where t1 = 20s, t2 = 30s and t3 = 50s.

12.6 Heterogeneous Traffic

The simultaneous effects of heterogeneous traffic and several lanes with lane-

changing and overtaking possibilities results in a curved free part of the fundamental

diagram even for models that would display a triangular fundamental diagram for

identical vehicles and drivers (as the Improved Intelligent Driver Model, IIDM).

This can be seen as follows: For heterogeneous traffic, each vehicle-driver class

has a different fundamental diagram. Particularly, the density ρC at capacity is dif-

ferent for each class, so a simple weighted average of the individual fundamental

diagrams would result in a curved free part and a rounded peak. However, without

lane-changing and overtaking possibilities, all vehicles would queue up behind the

vehicles of the slowest class resulting in a straight free part of the fundamental dia-

gram with the gradient representing the lowest free speed.10 So, both heterogeneity

and overtaking possibilities are necessary to produce a curved free part of the fun-

damental diagram.

12.7 City Traffic in the Improved IDM

10 Even when obstructed, drivers can choose their preferred gap (in contrast to the desired speed),

so the congested branch of the fundamental diagram is curved even without overtaking possibili-

ties.
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1. For realistic circumstances, the maximum possible flow is given by the dynamic

capacity, i.e., the outflow from moving downstream congestion fronts. In our

case, the “congestion” is formed by the queue of standing vehicles behind a

traffic light. Counting the trajectories (horizontal double-arrow in the upper di-

agram) yields

C = Qmax ≈
9veh

20s
= 1,620veh/h.

2. Counting the trajectories passing x = 0 for times less than 5 s, 15 s, and 40 s

(black bullets in the upper diagram) gives

n(5) = 1, n(15) = 5, n(40) = 15,

respectively. We determine β by the average time headway after the first vehi-

cles have passed,

β =
1

C
=

40s−15s

15−5
= 2.5s/veh.

We observe, that β denotes the inverse of the capacity. The obtained value

agrees with the result of the first subproblem within the “measuring uncertainty”

of one vehicle.11 This also gives the additional time until the first vehicle passes:

τ0 = 15s− 5β = 2.5s. (Notice that this is not a reaction time since the IIDM

does not have one.)

3. The propagation velocity of the position of the starting vehicles in the queue is

read off from the upper diagram:

w =−100m

20s
=−5m/s =−18km/h.

11 One could have calculated β as well using the pairs {n(15),n(5)} or {n(40),n(5)} with similar

results.
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4. We estimate the desired speed by the maximum speed of the speed profile

(lower diagram): v0 = 15m/s = 54km/h. The effective length leff is equal

to the distance between the standing vehicles in the upper diagram: ρmax =
1/leff = 10s/100m = 100veh/km, i.e., leff = 10m. Since the steady state of

this model corresponds to a triangular fundamental diagram, the time gap pa-

rameter T is determined by the propagation speed and the maximum density:

T =−leff/c = 2s. Finally, the maximum acceleration a and the comfortable de-

celeration b can be read off the lower diagram by estimating the maximum and

minimum gradient of the speed profile:

a =
20m/s

10s
= 2m/s2, b =

20m/s

7s
= 2.9m/s2.

12.8 Statistical Properties of the Ornstein-Uhlenbeck Process

To determine the expectation E (η(t)η(t ′)) from the given formal solution η(t) to

the stochastic differential equation of the Ornstein-Uhlenbeck process, we insert the

formal solution into E (η(t)η(t ′)) carefully distinguishing the arguments t and t ′

from the formal integration variables t1 and t2. This gives the double integral

E (η(t)η(t ′)) =
2

τ̃

t
∫

t1=−∞

t ′
∫

t2=−∞

e−(t−t1+t ′−t2)/τ̃ E (ξ (t1)ξ (t2))dt1dt2.

Notice that the operations of integration and averaging (expectation value) are ex-

changeable. We now consider the case t > t ′. Setting E (ξ (t1)ξ (t2)) = δ (t1− t2) and

using the definition
∫

f (t)δ (t)dt = f (0) of the Dirac δ -distribution to eliminate the

integral over t1
12 yields

E (η(t)η(t ′)) =
2

τ̃

t ′
∫

t2=−∞

e(2t2−t−t ′)/τ̃ dt2

which can be analytically solved resulting in

E (η(t)η(t ′)) = e−(t−t ′)/τ .

If t < t ′, the derivation proceeds analogously resulting in E (η(t)η(t ′)) = e−(t ′−t)/τ .

Consolidating these two cases, we arrive at

E (η(t)η(t ′)) = e−|t−t ′|/τ .

As important special case, we obtain the variance E
(

η2(t)
)

= 1. Finally, when

we apply the averaging operation E (·) to the formal solution η(t) itself using the

condition E (ξ (t)) = 0, we obtain E (η(t)) = 0, i.e., the second condition (12.46).

12 Since t ≥ t ′ and the above integration property of the δ -distribution only applies if the integration

interval includes zero (i.e., t1 = t2), we cannot use this property to eliminate the integral over t2.
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This concludes the derivation of the statistical properties of the Ornstein-Uhlenbeck

process.

12.9 Driving in Curves

1. Anticipation is needed because some time may be needed to reduce the speed

from the actual speed to vcurve
0 . Moreover, for safety reasons, one should have

finished the deceleration maneuver before entering the curve.

2. For a finite lateral slope angle β , the lateral acceleration relative to the road

surface consists of two components.

• Inertial acceleration v2/r multiplied with the projection factor cosβ parallel

to the road surface.

• Lateral slope force: gravitational acceleration g multiplied with the projec-

tion factor −sinβ (for a proper lateral slope, the slope force is directed op-

positely to the inertial force).

This gives v̇lat = v2/r cosβ −gsinβ and, setting v̇lat = b, the safe speed

vsafe =

√

r(b+gsinβ )

cosβ
= 12.2m/s = 44.0km/h.

3. The speed becomes critical if the ratio of the lateral and normal acceleration

(relative to the road surface) reaches the friction coefficient µ . As the lateral

component, also the normal component has two contributions, one from the

gravitation (gcosβ ) and one from the inertial acceleration (v2/r sinβ ). This

gives a critical speed

vcrit =

√

rg(µ cosβ + sinβ )

cosβ −µ sinβ
= 23.2m/s = 83.6km/h.

When restricting to the lateral comfortable deceleration, the speed safety factor

until one slides out of the curve is nearly 2. Notice that the critical speed tends to

infinity for tanβ = 1/µ which is realized on some racing courses or test tracks.

Problems of Chapter 13

13.1 Consequences of Estimation Errors

Overestimating the gap by 10%, i.e., by the factor 1.1 results in a smaller steady-

state gap. With the values of the problem statement, we obtain

1.1se = s0 + vT ⇒ se =
s0 + vT

1.1
= 28.3m

instead of the “true” steady-state se = 31.1m. When there is a constant additive

acceleration component athr = 0.4m/s2, the steady-state condition reads



698 Solutions to the Problems

v̇ = athr +
se−s0

T
− v

τ
!
= 0,

or se = s0+vT −τaz = 30.9m. Notice that the surprisingly small amount of change

can be tracked back to the “rigidity” of the OVM reaction caused by the small re-

laxation time τ .

13.2 Multi-Anticipation for the IDM

Applying the general equation (13.12) for multi-anticipative effects to the IDM gives

c
na

∑
j=1

a

(

s0 + vT

js

)2

= a

(

s0 + vT

s

)2

,

hence c= 1/(∑
na
j=1

1
j2
), i.e., Eq. (13.13). Instead of introducing c, it is obviously pos-

sible for the IDM to renormalize the parameters s0 and T by multiplying them with

a common factor. For this purpose, we write the left-hand side of above equation as

na

∑
j=1

a

(√
cs0 + v

√
cT

js

)2

,

so the factor
√

c of the problem statement is evident. The factor
√

c assumes values

between 1 (no multi-anticipation) and
√

6/π ≈ 0.78 (multi-anticipation to infinitely

many leaders). This means, the numerical values of s0 and T are reduced by no more

than 22%.

13.3 Wiedemann Model

1. Without the Heaviside function Θ(∆v+∆v0) in (13.28), the plausibility con-

dition (12.4) would be violated for ∆v < −∆v0 because, then, the acceler-

ation would decrease for increasing leading speed. The leading acceleration

has been added because only then this equation (for ∆v0 = 0) is based on the

constant-acceleration heuristic: The follower brakes in a way that, under this

heuristic, the minimum gap s = sAX is realized. (∆v0 acts as a safety contribu-

tion representing an uncertainty in estimating relative speeds.) Finally, adding

the term −b0 to (13.28) makes sure that, at least for v̇l ≤ 0, v̇following > v̇brake

holds at the boundary between the following and the deceleration regime sat-

isfying (12.1) and also between the following and approaching regime satisfy-

ing (12.1) and (12.4).

2. W-74 and W-99 accelerations for v0 = 100km/h, v̇l = 0:

(i) If v = vl = 20m/s, and s = 15m, both the W-74 and W-99 models are in

the braking regime and the acceleration (assumed to be the same) is given

by v̇W-74 = v̇W-99 =−0.95m/s2.

(ii) If v = 21.5m/s, vl = 20m/s, and s = 40m, the W-74 model is in the ap-

proaching regime resulting in v̇W-74 =−0.66m/s2 while the W-99 model

is in the free regime with v̇W-99 = 0.79m/s2
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Problems of Chapter 14

14.1 Dynamic Properties of the Nagel-Schreckenberg Model

To obtain physical units, we multiply the dimensionless desired speed of the NSM

with ∆x/∆ t. Thus, v0 = 2 (city traffic) corresponds to 54 km/h, and v0 = 5 (high-

ways) to 135 km/h. Likewise, multiplying the dimensionless accelerations with

∆x/(∆ t)2 = 7.5m/s2 yields the physical accelerations. In the deterministic NSM,

a = 1, so aphys = 7.5m/s2 resulting in an acceleration time of

τ0→100 =
vphys

aphys

= 3.7s.

In the stochastic model, the acceleration a is realized only with a probability (1− p).
So, the average acceleration time increases by a factor (1− p)−1 to 6.2 s.

14.2 Approaching a Red Traffic Light

The driver approaches with the desired speed v0 until the distance to the traffic light

falls below the “interaction distance” g= v0. Then, there are two possibilities for the

deceleration process: (i) stopping in one step (if, after crossing the interaction point,

the gap in the next time step is already zero), (ii) stopping in two steps v0 → v1 → 0

(if the gap after crossing the interaction point is v1 > 0). If v0 = 2, the realized

decelerations are (i) −15m/s2 or (ii) −7.5m/s2.

14.3 Fundamental Diagram of the Deterministic Nagel-Schreckenberg Model

Without stochastic components, the steady-state speed as a function of the gap g is

well-defined:

ve(g) = max(v0,g)

meaning that the macroscopic fundamental diagram (in physical units) has the well-

known triangular shape given by13

Qe(ρ) = min

[

V
phys
0 ρ ,

1

T

(

1− ρ

ρmax

)]

.

The values of its three parameters are

V
phys
0 = v0∆x/∆ t =

{

54km/h cities,

135km/h highways,

T = ∆ t = 1s, ρmax =
1

∆x
= 133veh/km.

In the stochastic model (p > 0), the average flow E (Q(ρ)) as a function of the

local density is below that of the deterministic case. The fundamental diagram is no

longer triangular, and also the gradients at zero and maximum density are different.

In the following two problems, we will derive

13 We drop the superscripts “phys” denoting physical quantities where no confusion is possible,

i.e., for ρ and Q. We will retain the superscripts for speeds and velocities.
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V
phys
0 = Q′

e(0) = (v0 − p)
∆x

∆ t
, wphys(ρmax) = Q′

e(ρmax) =−(1− p)
∆x

∆ t
.

14.4 Macroscopic Desired Speed

Without interaction and after a sufficient time, the vehicle speed is either v0 (no

dawdling in the last time step), or v0 − 1 (dawdling). If v = v0, then the speed will

be reduced in the next time step to v0 − 1 with probability p. If v = v0 − 1, the

speed in the next time step will reach v0 with probability 1− p. The situation is

stationary in the stochastic sense if expectation values do not change over time,

E (v(t +1)) = E (v(t)). Here, this means that the probabilities for the speeds v0 and

v0 −1 do not change over time, i.e., the unconditional “probability fluxes” from v0

to v0 − 1 and from v0 − 1 to v0 balance to zero.14 Setting up the balance for the

speed state v = v0 and denoting by θ the probability for this state, the probability

flux v0 → v0 −1 away from v0 is −θ p (probability θ times conditional probability

p; negative sign because the flux is outflowing). The “inflowing” probability flux

v0−1 → v0 is (1−θ)(1− p) (probability 1−θ times conditional probability 1− p)

. So, stationarity implies

d

dt
(Prob(v = v0)) =−θ p+(1−θ)(1− p)

!
= 0 ⇒ θ = 1− p,

or

E (v) = θv0 +(1−θ)(v0 −1) = v0 − p.

In physical units, this means V phys = E (v)∆x/∆ t, i.e., the result displayed above in

the solution to Problem 14.4.

14.5 Propagation Velocity of Downstream Jam Fronts

Assume a queue of standing vehicles where only the first vehicle has space to ac-

celerate. This first vehicle will accelerate with probability 1− p (with probability p,

dawdling occurs). Only if this vehicle accelerates, the next vehicle in the queue has

the possibility to accelerate in the next time step, which it does, again, with proba-

bility 1− p. This means, the “starting wave” propagates at an average wave velocity

w =−(1− p)∆x/∆ t. For p = 0.4, this yields the reasonable value w =−16.2km/h.

Problems of Chapter 15

15.1 Why the Grass is Always Greener on the Other Side?

We assume two lanes with staggered regions of highly congested traffic (ρ1,V1)
and less congested traffic (ρ2 < ρ1, V2 >V1) of the same length: Whenever there is

highly congested traffic on lane 1, congestion is less on lane 2, and vice versa (cf.

the figure in the problem statement). Since traffic in both regions is (more or less)

congested and the fundamental diagram is triangular by assumption, the transitions

from region 1 and 2 and from 2 to 1 remain sharp and propagate according to the

14 Mathematically, this balance of probability fluxes is called a Master equation.
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shock-wave formula (9.9) at a constant velocity

c =
Q2 −Q1

ρ2 −ρ1
=− l

T
=−5m/s.

The fraction of time in which drivers are stuck in the highly congested regions is

obviously equal to the fraction of time spent in regions of type 1. Denoting by τi the

time intervals τi to pass one region i = 1 or 2, we express this fraction by

pslower = p1 =
τ1

τ1 + τ2
.

When evaluating τi, it is crucial to realize that the regions propagate in the opposite

direction to the vehicles, so the relative velocity Vi + |c| is relevant. Assuming equal

lengths L for both regions, the passage times are τi = L/(Vi + |c|), so

p1 =

L
V1+|c|

L
V1+|c| +

L
V2+|c|

=
V2 + |c|

V2 +V1 +2|c| .

For example, if V1 = 0 and V2 = 10m/s, the fraction is

p1 =
10+5

10+10
=

3

4
,

i.e., drivers are stuck in the slower lane 75% of the time – regardless which lane they

choose or of whether they change lanes or not.

Alternatively, one picks out a vehicle at random. Since the less and highly con-

gested regions have the same length, the fraction of vehicles in the highly congested

region, i.e., the probability of picking one from this region, is given by

p1 =
ρ1

ρ1 +ρ2
=

200

200+200/3
=

3

4
.

15.2 Amber Time Intervals – Stop or Cruise?

We distinguish two cases: (i) Drivers can pass the traffic light at unchanged speed

in the amber/yellow phase, i.e.,

s < s1 = vτy.

(ii) When cruising, drivers would pass the traffic light in the red phase, so stopping

is mandatory. In this case, drivers need a reaction time Tr to perceive the signal,

make a decision, and stepping on the braking pedal. Afterwards, we assume that

they brake at a constant deceleration b so as to stop just at the stopping line. This

results in the stopping distance

s = vTr +
v2

2b
. (9)
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Obviously, the worst case for the initial distance s to the stopping line at switching

time green-yellow is the threshold s = s1 between (i) and (ii), i.e., cruising is just no

more legal. Inserting s = s1 into Eq. (9) and solving for b gives

b =
v

2(τy −Tr)
= 3.47m/s2.

This is a significant, though not critical, deceleration. It is slightly below the de-

celeration 3.86m/s2 implied by the stopping or braking distance rule “speedometer

reading in km/h squared divided by 100” (Problem 12.2) but above typical com-

fortable decelerations of the order of 2m/s2. We conclude that the legal minimum

duration of amber phases is consistent with the driver and vehicle capabilities.

15.3 Trajectory Planning of a Lane Change

The trajectory and its derivatives are given by

y(t) = c0 + c1t + c2t2 + c3t3 + c4t4 + c5t5,

y′(t) = c1 +2c2t +3c3t2 +4c4t3 +5c5t4,

y′′(t) = 2c2 +6c3t +12c4t2 +20c5t3.

Setting w = τ = 1, we have the fixed constraints

y(0) = y′(0) = y′′(0) = 0, y(1) = 1, y′(1) = y′′(1) = 0.

The conditions at t = 0 give immediately c0 = c1 = c2 = 0. The remaining coeffi-

cients are given by the restraints at t = 1 (end of lane change),

c3 + c4 + c5 = 1,

3c3 +4c4 +5c5 = 0,

6c3 +12c4 +20c5 = 0.

Solving this linear equation with three unknowns give

c3 = 10, c4 =−15, c5 = 6.

The unscaled coefficients of (15.13) are given by multiplying the found coefficients

c j with w/τ j.

15.4 Stop or Cruise Decisions Implied by Car-Following Models

1. This MOBIL decision criterion means that one brakes to a stop whenever the

braking deceleration at decision time is smaller than the safe braking decelera-

tion. Otherwise one cruises through the intersection. In sensible models as the

IDM, one tries to bring the situation under control whenever the required brak-

ing deceleration is above the comfortable deceleration b. Assuming bsafe > b

this means that the initial deceleration is the highest, so a safe deceleration to a

stop is guaranteed.
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2. If the decision is “stop”, one assumes a virtual standing vehicle of length zero

at the stopping line, i.e., vl = 0 or ∆v = v. Evaluating the decision criterion for

the IDM gives

dv

dt
=−a

(

s∗(v,vl)

s

)2

> −bsafe

a

(

s∗(v,vl)

s

)2

< bsafe

a
(s∗(v,vl))

2

bsafe

< s2.

This means, the general critical gap is given by

s > ssafe(v) = s∗(v,0)
√

a

bsafe

. (10)

3. For a = b = bsafe, we obtain for v = v0

s > ssafe(v) = s∗(v,0) = s0 + v0T +
v2

0

2b
.

If the time gap parameter T also gives the reaction time, this is precisely the

minimum gap s0 plus the stopping distance with its components reaction dis-

tance vT and braking distance v2/(2b). Specific values:

• v0 = 50km/h : ssafe = s∗(v0,0) = 62m, ∆ tsafe = ssafe/v0 = 4.47s

• v0 = 70km/h : ssafe = s∗(v0,0) = 114m, ∆ tsafe = ssafe/v0 = 5.86s

4. The above critical distances and associated critical time intervals till passing are

too great. Considering that the minimum amber times for 50 km/h and 70 km/h

are given by 3 s and 4 s, respectively, this strategy may lead to crossing red traffic

lights. Of course, the reason is that the legislation imposes on the driver a safe

deceleration bsafe that is somewhat greater than the comfortable deceleration b.

In this case, we obtain from the above general formula (10) for bsafe = 4m/s2,

• v0 = 50km/h : ssafe = 44m, ∆ tsafe = ssafe/v0 = 3.16s

• v0 = 70km/h : ssafe = s∗(v0,0) = 81m, ∆ tsafe = ssafe/v0 = 4.14s

There is still a minimal chance of passing a red traffic light if the amber/yellow

times are at their minimum allowed values of 3 s and 4 s, respectively. This is

due to an IDM imperfection: At the beginning of a stopping maneuver, the IDM

tends to “brake” a little too hard.

5. For the OVM, we have the critical gap

v̇OVM =
vopt(s)− v

τ
<−bsafe.

Because only the interacting range s < v0T is relevant, this leads to
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v̇OVM =
s/T − v

τ
>−bsafe, ⇒ s > ssafe = T (v− τbsafe)

or s > ssafe = T (v− τbsafe). For v = v0 = 72km/h = 20m/s, τ = T/2 = 0.5s,

and bsafe = 4m/s2, this results in ssafe = 9.0m. This is much too low: For exam-

ple, one would brake if s = 10m. However, at this gap, the kinematic braking

deceleration to avoid crossing the stopping line (and stopping mid-intersection

instead) is given by bkin = v2/(2s) = 20m/s2.

15.5 Entering a Highway with Roadworks

In this situation, we can apply both the safety criterion (15.4) of the general lane-

changing model or the safety criterion of the decision model (15.37) for entering

a priority road. With the notations of Fig. 15.7, we obtain for a defensive driver

(bsafe = 0)

sf > ssafe(vf,v) = sopt(vf) = vfT = 20m.

Here, we have dropped all hats, consistent with the convention adopted in Sec-

tion 15.6. In the “worst case”, the driver decides to merge if the vehicle on the

highway is just ssafe = 20m away. Now we calculate the minimum deceleration bmin

the driver on the main road has to adopt to avoid a crash. Applying the kinematic

braking distance s = ∆v2/(2b) to the critical distance ssafe = 20m, the initial speed

difference ∆v = vf = 20m/s, and the relative deceleration b = bmin + a (assuming

that the merging vehicle accelerates at a = 2m/s2), and solving for bmin results in

bmin =
v2

f

2s
−a = 8m/s2.

We observe that, in spite of the very conservative assumption bsafe = 0 in the de-

cision model, the actually necessary deceleration of the main-road vehicle corre-

sponds to an emergency braking maneuver. This discrepancy can be traced back

to the OVM whose braking strategy is inconsistent with kinematic constraints and

does not contain the speed difference although this is a crucial exogenous factor (in

fact, the OVM simulation will lead to crashes in this situation). As shown in the

next problem, drivers modeled by the Gipps’ model or the IDM family will make a

consistent decision in this situation.

15.6 An IDM Vehicle Entering a Priority Road

In this situation (Fig. 15.7 for vi = 0), the IDM safety criterion (15.37) reads

sf > sIDM
safe (vf,0) =

s0 + vfT +
v2

f

2
√

ab
√

afree(vf)
a

+ bsafe
a

,

or, with s0 = 0, vf = v0, and a = b = bsafe (then, the square root is equal to 1)

sf > sIDM
safe = vfT +

v2
f

2bsafe

.
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This means, the minimum gap to allow merging corresponds to the stopping dis-

tance of the follower on the main road (braking distance v2/(2b) plus distance vTr

driven during the reaction time) when the desired time headway is set equal to the re-

action time, T = Tr. Consequently, the IDM safety criterion for merging is consistent

with the driver capabilities and kinematic constraints. For T = 1s, bsafe = 2m/s2,

and v0 = 50km/h, we obtain as safe distance for merging sIDM
safe = 31m.

15.8 Overtaking on the Lane for the Opposite Direction

1. For the rural road environment, the minimum safe gap to the oppositely driving

vehicle for a positive safety criterion is given by ssafe = 736m resulting from

a displacement distance sdispl = 82m and the total overtaking time τovertake =
10.1s.

2. The minimum initial gap to the oppositely driving vehicle when overtaking a

bicycle in the given city environment is given by ssafe = 162m resulting from

a displacement distance sdispl = 34m and the total overtaking time τovertake =
3.4s. Remarkably, in the above typical cases, overtaking a truck on a rural road

requires more than four times the safe distance to the opposite driver than that

required when overtaking a bicycle in a city.

Problems of Chapter 16

16.1 Characterizing the Type of Instability

The displayed traffic flow is locally stable since, after a sufficient time, each driver

reverts to the steady state (he or she stops, at most, once). At the same time, the

dynamics is string unstable since the amplitude of the oscillations increase from

vehicle to vehicle. The string instability is convective (of the upstream type) since

there is only a single traffic wave: After a sufficiently long time, traffic flow reverts

to the steady state at any fixed location.

16.2 Propagation Velocity of Traffic Waves in Microscopic Models

At first, we transform the microscopic propagation velocity given in the comoving

(Lagrangian) coordinate system to a stationary coordinate system:

c̃ = ve + c̃rel = ve − (se + l)v′e(se) = ve −
v′e(se)

ρe

.

Here, we used the relation se + l = 1/ρe. Now we express the microscopic gradient

v′e(s) by the corresponding macroscopic quantity V ′
e(ρ). Using the identity ve(s) =

Ve(ρ(s)) and the micro-macro relation ρ = 1/(s+ l), we obtain

v′e(s) =
dve

ds
=

dVe

dρ

dρ

ds
=− V ′

e(ρ)

(s+ l)2
=−ρ2V ′

e(ρ). (11)

Inserting this into the expression for c̃ gives the final result
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c̃ = ve −
v′e(se)

ρe

=Ve +ρeV
′
e(ρe) =

d

dρe

(ρeVe) = Q′
e(ρe).

16.3 Instability Limits for the Full Velocity Difference Model

Subproblem 1. The local stability criterion is satisfied if

f̃v + f̃∆v =−1

τ
− γ ≤ 0 ⇒ γ ≥−1

τ
=−0.2s−1.

This is true even for slightly negative values of the sensitivity γ to speed differences

(although this implies accelerations in response to positive approaching rates which

is no reasonable behavior). As such, it reflects the result that all reasonable (and

even some unreasonable) models without explicit delays (reaction times) are locally

stable.

Subproblem 2: For v ≥ v0, there are no interactions and, therefore, no instabilities.

If v < v0, we have v′e(s) = 1/T , f̃v = −1/τ , and f̃∆v = −γ . Inserting these rela-

tions into condition (16.27) for an oscillation-free local car-following characteristics

yields
1

T
≤ 1

4τ
(1+ γτ)2 .

Solving this quadratic inequality for γ results in

γ ≥−1

τ
± 2√

T τ
= 0.69s−1.

Here, we used the general plausibility condition γ ≥ 0 to select the positive sign of

the square root when calculating the numerical value.

Subproblem 3. To determine the limits of string instability, we use criterion (16.78).

Solving the resulting inequality for γ yields

γ >
1

T
− 1

2τ
= 0.9s−1.

We observe that car-following schemes may be string unstable even if they do not

produce any kind of oscillations (damped or otherwise) when following a single

leader. Here, this applies to the parameter range 0.69s−1 < γ ≤ 0.9s−1. This is

highly relevant when investigating the effects of adaptive cruise control systems on

traffic flow.

16.4 Stability Properties of the Optimal Velocity Model Compared to Payne’s

Model

The OVM criterion for string stability reads v′e(s)≤ 1/(2τ), and the corresponding

criterion for flow stability in Payne’s model −V ′
e(ρ)≤ 1/(2ρ2τ). Using the micro-

macro relation v′e(s) = 1/ρ2
e V ′

e(ρ) already needed for Problem 16.2, we show the

equivalence by direct substitution:
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1

2τ
≥ v′e(se) =−ρ2

e V ′
e(ρe(se)) ⇒ −V ′

e(ρ)≤
1

2ρ2τ
q.e.d.

16.5 OVM with “Pushing” from Behind

The long-wavelength stability criterion (16.94) can be written as

v′opt(s)≤
1

2τ

1+λ

(1−λ )2
.

For λ = 0.5, the second factor is equal to 6 increasing the string stability sixfold.

However, for very low leading speeds, the follower “pushes” the subject vehicle

into the leader even in the semi-static situation because the steady-state gap can drop

below zero. For the given triangular fundamental diagram and gaps below s0+(v0T ,

the steady-state speed of the subject vehicle in the presence of at least one follower

is given by

ve(s) = (1−λ )vopt(s)+λv0 = (1−λ )

(

s− s0

T

)

+λv0.

For a gap equal to zero, this becomes

ve(0) =− s0

T
+λ

( s0

T
+ v0

)

.

This means for any λ > (1+ v0T/s0)
−1, we have a finite steady-state speed at zero

gap. i.e., collisions. Assuming v0 = 19m/s, T = 2s, and s0 = 2m, this is already

true for λ > 0.05.

16.6 Flow Instability in Payne’s Model and in the Kerner-Konhäuser Model

Subproblem 1. We have solved the general flow stability problem for Payne’s model

already in Problem 16.4. For the triangular fundamental diagram as specified in the

problem formulation, the gradient of the speed-density relation reads

V ′
e(ρ) =

{

0 ρ ≤ ρC,
− 1

ρ2T
ρ > ρC,

with the density at capacity ρC = 1/(v0T + leff) = 20veh/km. For free traffic

(ρ < ρC) there are no interactions (V ′
e(ρ) = 0) and therefore unconditional stability.

Congested traffic flow (ρ ≥ ρC) is stable if

τ <
T

2
.

This means, Payne’s model describes stable congested traffic for unrealistically

small adaptation times τ , only.

Subproblem 2. For the Kerner-Konhäuser model, the flow stability criterion reads

(ρV ′
e(ρ))

2 < θ0. Inserting the steady-state relation Ve(ρ) = max[V0,1/T (1/ρ −
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1/ρmax)] gives, again, unconditional stability for free traffic flow (ρ < ρC = 20/km)

which is consistent with the requirements of the problem formulation. For congested

traffic (ρ > ρC), we have
1

ρ2T 2
< θ0.

From this condition, we determine θ by demanding that congested traffic flow

should be unstable for densities below ρ3 = 50/km, and stable above. With T = 1.1s

and ρ3 = 50/km, we finally obtain (cf. the figure below)

θ0 =
1

ρ2
3 T 2

= 331
m2

s2
.

ρ
crit

ρ
3

Ve

ρ

Kerner−Konhäuser (KK) Model 

stable

instable

stable

16.7 Flow Instability of the GKT Model

For high densities near the maximum density, we can approximate the GKT steady-

state flow by Qe ≈ 1/T (1 − ρ/ρmax), or V ′
e(ρ) = −1/(T ρ2) ≈ −1/(T ρmax)

2.

Without anticipation (γ = 0) and assuming a constant speed variance prefactor

αmax = α(ρ)≈ α(ρmax) which is equivalent to P′
e ≈ σ2

V ≈ αmaxV 2
e , the GKT stabil-

ity criterion (16.130) becomes

(ρV ′
e)

2 −P′
e =

1

T 2ρ2
−αmaxV 2

e ≤ 0.

Since, for ρ → ρmax, the expression (T ρ)−2 tends to the squared propagation veloc-

ity c2 of moving downstream jam fronts while the speed variance αmaxV 2
e tends to

zero, the stability criterion cannot be satisfied: Without anticipation, the GKT model

is unconditionally unstable for sufficiently high densities!

For a finite anticipation range sa = γVeT , however, the third term of the stabil-

ity condition (16.130) can stabilize traffic flow. Sufficiently close to the maximum

density, we can approximate the full GKT flow stability criterion to an analytically

tractable condition. If ρ ≈ ρmax, we have, up to linear order in Ve

ρV ′
e ≈− 1

T ρ
, P′

e ≈ αmaxV 2
e ≈ 0, sa(V0 −Ve)≈ γVeV0T.
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Furthermore, with ρmax/(ρmax − ρ) ≈ (ρVeT )−1, we can approximate the bracket

of the last term of Eq. (16.130) by

[

ρmax

ρmax −ρ
− ρV ′

e

σV

√
π

]

≈ 1

ρVeT

(

1+
1√

αmax

)

.

Inserting all this into the GKT stability condition (16.130), we find that the GKT

model is string stable for densities near the maximum density if the anticipation

factor γ fulfills

γ >
τ

2T 2ρmaxV0

[

1+(αmaxπ)−1/2
]

which is condition (16.131).

16.8 IDM Stability Class Diagram for other Parameter Values

In the following, we will denote the scaled dimensionless quantities with a tilde.

According to the problem formulation, the scaled time and space coordinates as

well as derived variables (speed, acceleration) are related to the unscaled quantities

as

t =

√

s0

b
t̃, x = s0x̃, v =

√

bs0ṽ,
dv

dt
= b

dṽ

dt̃
.

Inserting this transformation into the IDM equations results in

dṽ

dt̃
=

a

b

[

1−
(√

bs0ṽ

v0

)4

−
(

s̃∗

s̃

)2
]

,

s̃∗ =
s∗

s0
= 1+

√

b

s0
T ṽ−

√

b

a

ṽ∆ ṽ

2
.

As a consequence, the prefactors of the different new terms are dimensionless as

well. Moreover, they come in only three combinations of the original IDM parame-

ters which we can identify as the new model parameters:

ṽ0 =
v0√
bs0

, f̃ =
a

b
, T̃ = T

√

b

s0
.

Thus, the scaled IDM equations read

dṽ

dt̃
= f̃

[

1−
(

ṽ

ṽ0

)4

−
(

s̃∗

s̃

)2
]

, s̃∗ = 1+ ṽT̃ − ṽ∆ ṽ

2
√

f̃
.

This allows a powerful conclusion:15 Changing the five physical IDM parameters

such that ṽ0, f̃ , and T̃ remain unchanged does not change the scaled IDM equations,

15 In hydrodynamics, such scale relations are the basis to measure the hydrodynamics of big objects

(ships, planes etc.) by observing a scaled-down (physical) model of the object in a wind or water

channel rather than observing/measuring the real thing.
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nor the local dynamics. This allows to reduce the five-dimensional IDM parame-

ter space spanned by V0, T , a, b, and s0 to the three-dimensional space (Ṽ0, T̃, ã)
spanned by the dimensionless parameters. However, the stability class depends not

only on the local dynamics but also on the vehicle length influencing the macro-

scopic fundamental diagram Qe(ρ) and the sign of propagation velocities. There-

fore, to ensure the same stability class, a forth dimensionless parameter

l̃ = l/s0

must be kept constant.

When applying these insights to the concrete problem of where to read off the

stability class in the a-T -class diagram when other IDM parameters are changed,

we observe that this is only possible if speed is changed proportionally to changes

of
√

bs0 and the vehicle length changes proportionally to s0. Only then, the two

scaled parameters ṽ0 and l̃ containing neither a nor T remain unchanged. This is

fulfilled here since s0 does not change anyway and the new values v∗0 = 139km/h

and b∗ = 2m/s2 of the desired speed and time headway, respectively, satisfy ṽ0 =
v0(bs0)

−1/2 = v∗0(b
∗s0)

−1/2 = const. In order to make sure that f̃ and T̃ remain

unchanged as well, we read off the old diagram at the coordinate (T ∗,a∗)= (τT,αa)
rather than at (T,a). We fix the scaling factors τ and α to fulfill the conditions

a

b
=

a∗

b∗
=

αa

b∗
, T

√

b

s0
= T ∗

√

b∗

s0
= τT

√

b∗

s0

resulting in

τ =

√

b

b∗
= 0.87, α =

b∗

b
= 1.33.

This means, for the new values of v0 and b, one reads of the class diagram at 0.87

times the original T coordinate and 1.33 times the original a coordinate.

16.9 Fundamental Diagram with Hysteresis

Subproblem 1. Maximum free-traffic flow:

Qfree
max = v0ρ free

max = 2,400veh/h.

Subproblem 2. The congested part of the fundamental diagram corresponds to the

congested part of the triangular fundamental diagram for the parameters Qcong(ρ) =
1/T (1−ρleff) where leff = l+s0 = 6.67m. This congested branch intersects the free

branch at the same point (ρC,Q
dyn
max) that would correspond to the maximum of the

triangular diagram without hysteresis:

ρ
cong
min = ρC =

1

v0T + leff

= 16.67veh/km.
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Subproblems 3 and 4. The jam outflow is characterized by the dynamic capacity

Q
dyn
max = v0ρC = 2,000veh/h. This describes a capacity drop of

∆Q = Qfree
max −Qdyn

max = 400veh/h (or 16.7%).

The density of the outflow is given by ρC. This means, hysteretic effects can take

place in the density range ρ ∈ [ρC,ρ
free
max], or, numerically, ρ ∈ [16.67veh/h,20veh/h].
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Problems of Chapter 17

17.1 Measures of Performance

Following data are suitable for determining the different measures of performance

(MoPs) of the problem statement and running the appropriate simulation

(i) Acceleration of vehicles: Trajectory and extended floating-vehicle data (XFCD).

This data also provides the simulation of a microscopic model with the needed

inputs gap and leading speed. Normal floating-vehicle data without leading-

vehicle information or stationary detectors are not applicable.

(ii) Speed of vehicles: Trajectory data, XFCD, and stationary double-loop data

(SDD). With the first two data categories, the simulation setup is the same

as above. With double-loop data, local and average speeds as well as speed

variances can be calculated and used to estimate microscopic and macroscopic

models.

(iii) Gap to the leading vehicle: Data and simulation as for the accelerations as

MoP.

(iv) Realized travel time: Of course, travel time series but also trajectory data to-

gether with a microscopic simulation or SDD together with a macroscopic

simulation. In the microscopic simulation, the travel time is given directly

by the corresponding trajectories, in the macroscopic simulation, the realized

travel time at time t (cf. Sect. 22.1) is given via the virtual trajectory extracted

from the macroscopic speed field V (x, t) by

dx

dt ′
=V (x, t ′)
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with the final condition

x(t) = x2.

Notice that XFC data are unsuited because, then, only leader-follower pairs

can be simulated and the follower essentially has the same realized travel time

as the leader.

(v) Flow at a given location: Since flow is an extensive quantity, only sources with

extensive data are eligible, i.e., Trajectory data or SDD.

(vi) Flow-density data at a given location: Likewise.

(vii) Local lane-changing rate: Microscopic data needed, i.e., trajectory data or

XFCD. Since the lane-changing rate is intensive, no extensive input (density

or flow) is needed and the local lane-changing rate can also be estimated from

the sample of the xFCD provided these data contain sufficiently many lane

changes.

17.2 Goodness of Fit Functions

Calibration means minimizing (or maximizing) a GoF function S(β). However, the

GoF value itself is not relevant for the calibration but the argument β̂ minimizing or

maximizing this function. If f (·) is a strictly monotonously increasing or decreasing

function with f ′(x) 6= 0 everywhere in the allowed range, we have

∂ f (S(β))

∂β
= f ′(S)

∂S

∂β
= 0 ⇔ ∂S

∂β
= 0,

since f ′(S) is strictly nonzero, i.e., an unchanged calibration result. Specifically, the

square root (going from MSE to RMSE) is such a strictly monotonous function as is

multiplication with the constant
[

∑n
i=1

(

ydata
i

)2
]−1/2

(going from the RMSE to the

SRMSE).

17.3 Compatibility of Measures of Performances with Goodness of Fit Func-

tions

Relative GoFs such as RMSPE or MAPE: Not any ydata
i may be zero (as it may

happen for the speed) because, otherwise, these MoPs are not defined. Possibly

negative ydata
i (accelerations) are not allowed either because they contradict the very

concept of relative errors denoting “standard deviation divided by expectation”. Fi-

nally, plausible error measures are translation invariant, i.e., do not change when

adding to the positions a global constant (e.g., going from local coordinates to geo-

coordinates). This excludes positions from relative and standardized GoFs but not

from absolute GoFs (RMSE, MAE) which remain unchanged when going from gaps

to positions.

Standardized GoFs such as SRMSE: In contrast to relative MoPs, ydata
i = 0 is al-

lowed for some i because only the sum and not single data points are in the denomi-

nator, i.e., the speed is a valid MoP. Positions and accelerations are excluded for the

same reasons as for the relative GoFs.
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17.4 Influence of Serial Correlations on Measures of Parsimony

Given are 20 data points (si,vi) of which the first ten and the second ten are identical.

This means, Model (i) can fit, at least, ten data points exactly, while Model (ii)

fits the data to 100%, after calibration. In contrast, if the data were not serially

correlated, Models (i) and (ii) will fit at least one and two data points, respectively.

This result does not depend on the specific model, since the same would apply to,

say, the models (i) v̂(s) = ln(β0/s) and (ii) v̂(s) = ln(β0/s+β1). This means, even

completely nonsensical models fit one additional data point per parameter if the

data points are independent, but they fit ten additional points if they are serially

correlated as in this example. Now assume a nonsensical addition to a given model

introducing one new parameter. For i.i.d. errors in the data, a parsimony test such

as the likelihood-ratio test would yield a negative result for the augmented model

since each parameter can always fit one additional data point without increasing

its predictive value which such tests take care of. However, for correlated data as

above, this parameter explains ten additional points. For robustness tests assuming

i.i.d. errors, this corresponds to nine nontrivial fits which such tests may erroneously

interpret as worth the additional parameter.

Problems of Chapter 18

18.1 Phase Diagram for Stability Class 3

For class 3, there are no traffic-flow instabilities and no hysteresis. Therefore, one

just distinguishes between free traffic and homogeneous congested traffic:

Q rmp [veh/h]

m
ai

n
Q

[v
eh

/h
] HCT

Free Traffic
=Q

max

tot

Q

Furthermore, since no instability also implies no hysteresis effects, there is only one

phase diagram valid for both small and large initial perturbations.

18.2 Boundary-Induced Phase Diagram

The kind of extended congested pattern (TSG, OCT, HCT) is directly defined by the

supply restriction Qout. Because of the oscillatory nature of the congested states for

comparatively high values of Qout (OCT and TSG), significant perturbations arrive

at the upstream boundary activating the “inflow-bottleneck” if Qin >Cdyn (remem-
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ber that we have I = 1 lane). If, additionally, Qout ≥ Cdyn, the potential outflow

is higher than the inflow restricted by the activated inflow-bottleneck. This means

there is free traffic in the bulk of the investigated road section corresponding to the

maximum-flow state. If, however, Qout < Cdyn, congested traffic will arise every-

where and the inflow-bottleneck (whether activated or not) is no longer relevant.

Therefore, the maximum-flow state requires both Qin >Cdyn and Qout ≥Cdyn. This

results in following boundary-induced phase diagram:
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The situation with an activated inflow bottleneck corresponds to the stationary front

of a bottleneck in inhomogeneous systems. However, since no upstream region is

simulated here, the stationary front appears as a “standing wave”. In simulations, ac-

tivated inflow bottlenecks are a serious problem since they introduce bottlenecks not

corresponding to anything in reality. Dedicated and very complex upstream bound-

ary conditions (not discussed here) are necessary to avoid them.

Problems of Chapter 19

19.1 Assessing a Mass Event

1. The bottleneck is the region with the lowest local capacity. Without counterflow

and obstacles, the capacity is given by

C = Jmaxwtot, Jmax = 1.25ped(ms)−1,

where the value for the maximum flow density has been read off the maximum

of the Weidmann flow density depicted in Fig. 19.2. In the tunnel sections, we

have a total width wtot = 40m while, in the ramp section, there is only one

pedestrian stream with a width of 30 m. Therefore, the bottleneck is at the (be-

ginning of) the ramp section and its capacity is given by

C = 1.25ped(ms)−130m = 37.5ped/s = 135000ped/h.
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2. With a capacity of 135 000 ped/h, the approach network can manage the initial

demand. After a surge to Qin = 170000ped/h, the tunnels are still able to man-

age the demand (since their total capacity is 1.25ped(ms)−150m = 50ped/s =
180000ped/h) while the ramp is not. Therefore, we expect a breakdown at the

begin of the ramp section.16

3. On the upstream free-flow side in the tunnel, we have

J1 =
Qin

40m
= 1.18ped(sm)−1, ρ1 = ρ free(J1) = 1.1ped/m2

where ρ1 has been read off Fig. 19.2(left) for the Weidmann FD. Likewise, we

have on the congested downstream side in the tunnel

J2 =
C

40m
= 0.94ped(sm)−1, ρ2 = ρcong(J2) = 3.5ped/m2.

With the shockwave-formula, the propagation of the congestion front is given

by

c12 =
J2 − J1

ρ2 −ρ1
=−0.101m/s

and, after one hour of increased demand, the congested region in the tunnels is

−c123600s = 365m long.

19.2 Weidmann’s Fundamental Diagram

1. The three parameters of the Weidmann model (19.7) have following meaning

• v0: desired speed (since this is the steady-state speed for ρ → 0)

• ρmax: maximum density (since at this density the steady-state speed tends to

zero)

• λ : form factor. For small values, the density at capacity is rather low while

for high values (λ = ρmax or higher), the e function of the Weidmann model

only leads to significantly decreasing flows for densities near the maximum

density.

2. Comparing the Weidmann model (19.7) with the steady-state solution of the

Social-force model (SFM) (19.54) for a series of single files, we can identify

the effective radius R of an SFM pedestrian and the range parameter B as

R =
1

2
√

ρmax
= 0.215m, B =

√
ρmax

λ
= 1.21m.

19.3 Kinetic and Potential Energy of the Social Force Model

Without free-flow forces and for a pedestrian moving straight to a standing pedes-

trian (assuming, without loss of generality, a motion in direction of the x axis), the

acceleration of the moving pedestrian reads

16 In fact, this was the location of the accidents caused by the stampede of the Loveparade event.
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dvx

dt
=−∂Φ

∂x
.

For a circular or elliptical I specification, the social-force potential exerted by the

standing pedestrian is constant. So, by multiplying both sides of the above equation

with vx, we can integrate the equation as follows

dvx

dt
vx = −∂Φ

∂x
vx =−∂Φ

∂x

dx

dt

d

dt

(

1

2
v2

x

)

= −dΦ

dt

1

2
v2

x = −Φ(x)+C.

The integration constant can be determined by assuming an initial speed v∞ suffi-

ciently far away from the target pedestrian (x→−∞) where Φ(x) = 0, so C = 1/2v2
∞

and

v2
x(x) = v2

∞ −2Φ(x).

In order to not collide or touch with the pedestrian (assumed to be circular with

radius R), the moving pedestrian needs to stop before reaching |x|= 2R (pedestrian

radius R), so

Φ(2R)>
1

2
v2

∞

which is (19.19) for C j : |x| ≤ 2R.

19.4 Limits of the Self-Driving Force of the Social Force Model

In the best case, a pedestrian i driven by the free-flow acceleration (v0 − vi)/τ in

x direction (x < 0) towards another pedestrian j at (x,y) = 0 is already standing

immediately at pedestrian j, i.e., xi =−R. In this situation, the static repulsion force

−Φ ′(x) needs to overcompensate the free driving force:

v0 − vi

τ
=

v0

τ
< Φ ′(x) = Ae−|x|/B .

With a radius R for both pedestrians, we need to require for the relaxation time τ the

condition

τ > τ =
v0

A
e−2R/B.

which is Eq. (19.23) for R1 = R2. In order to avoid collisions for other cases as well

(moving instead of standing pedestrians), the relaxation time τ should be signifi-

cantly higher than τc.

19.5 Consistency Order of the Velocity Verlet Scheme As in Chapter 16, we de-

fine a function f (τ) to be of the “order” symbol O(τn) if limτ→0 f (τm)=0 for any

m < n. For notational simplicity, we ignore the sums, indices and vector proper-

ties of the SFM equations of motion (neither of them does influence the numerical

properties) and write the Velocity Verlet scheme as
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x′ = x+ v∆ t + 1
2

f ∆ t2,
f ′ = f (x′,vE), vE = v+ f ∆ t,
v′ = v+ 1

2
( f + f ′)∆ t,

(12)

where the dashed quantities are the numerical approximations taken at the time t +
∆ t and the not dashed ones at time t. Obviously, due to its ballistic nature, the

positional discretization error

∆x = xreal(t +∆ t)− x′

where xreal(t+∆ t) is the exact solution of the SFM for the initial conditions x(t) = x

and v(t) = v is already of O(∆ t3) while the Euler predictor vE for the speed is only

O(∆ t2), i.e., the ballistic scheme with the Euler speed update is only of local order

O(∆ t2) and global order O(∆ t).
In order to assess the consistency order of

∆v = vreal(t +∆ t)− v′

we make use of the assumption that the first partial derivatives of the forces,

∂ f

∂x
≡ fx,

∂ f

∂v
≡ fv,

are finite and expand f to first order in x and v,

f (x+∆x,v+∆v) = f + fx∆x+ fv∆v+O(∆x,∆v)2

With the second line of (12), we transform this in an expansion around t:

f ′ = f (x′,vE) = f + fxv∆ t + fv f ∆ t +O(∆ t)2

Notice that we have already ignored the term 1
2

fx f (∆ t)2 which is of O(∆ t)3. Insert-

ing this into the velocity update of (12) finally gives

v′ = v+
1

2
( f + f ′)∆ t = v+ f ∆ t +

1

2
( fxv+ fv f )(∆ t)2 +O(∆ t)3.

So, both the positional and velocity updates of the Velocity Verlet scheme are of

third local and thus of second global consistency order. This derivation also indi-

cates that a higher consistency order is not always better. If we have physical inter-

actions, the equations of motion are stiff meaning that the gradients fx and fv are of

high absolute value making the global error to scale with (∆ t)2 but with a very big

prefactor particularly relating to the fv f product term.

19.6 Free-Flow Speed of a Pedestrian Cellular Automaton

The three allowed cells are associated with the displacement vectors

∆r0 =

(

0

0

)

, ∆r1 =

(

∆x1

∆y1

)

, ∆r2 =

(

∆x2

∆y2

)

,
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where the components are related to the absolute displacement 0, L, or L
√

2 (with

the cell size L) multiplied by straightforward trigonometric functions. For a given

desired velocity v0 = v0ex, we have three equations for the three unknowns p0, p1,

and p2 corresponding to the expected displacement vectors and the probability sum

condition,

E(∆x) = p1∆x1 + p2∆x2 = v0τa,

E(∆y) = p1∆y1 + p2∆y2 = 0,

p0 + p1 + p2 = 0.

If ∆y1 = 0, we have from the second equation p2 = 0, hence

∆y1 = 0 : p2 = 0, p1 =
v0τq

∆x1
, p0 = 1− p1, ∆x1 = L or L

√
2

Likewise, if ∆y2 = 0, the probabilities are

∆y2 = 0 : p1 = 0, p2 =
v0τq

∆x2
, p0 = 1− p2, ∆x2 = L or L

√
2

If neither ∆y1 = 0 nor ∆y2 = 0, the grid is not oriented towards the destination and

the non-degenerated solution of the above equation system reads

p1 =
v0τq∆y2

∆x1∆y2 −∆x2∆y1
, p2 =−p1

∆y1

∆y2
, p0 = 1− p1 − p2.

Obviously, we need to require v0τq/L ≤ 1. Otherwise, the probabilities are not al-

ways restricted in the range 0 ≤ pi ≤ 1.

Problems of Chapter 20

20.1 Overtaking Two Slower Vehicles

1. For λ = 0, followers have no influence on the leaders, so the two leaders will

not make space for the motorcyclist to pass.

2. The lateral dynamics of the follower is driven by the lateral repulsive forces

from both leaders. Because they both have the same speed and the same lon-

gitudinal position, the situation is symmetric and the follower will be laterally

centered with equal lateral gaps sy to both leaders.

3. Once laterally centered, the passing will succeed if, at a speed v = v1, the lon-

gitudinal acceleration is positive during the time of longitudinal overlap where

the two vehicles are still the leaders (greater coordinate x). From Eq. (20.12) we

obtain
dv

dt
= f free + f int = f free(v)−bmax exp

(

− sy

s0y

)

> 0



Solutions to the Problems 719

and solving for the critical lateral gap giving a positive acceleration at speed v1,

scrit
y = s0y ln

(

bmax

f free(v1)

)

.

Notice that only the most interacting leader is considered, also if, as here, both

leaders exert the same force.

4. Inserting the numerical values f free(v1) = 1m/s2, bmax = 9m/s2, and slat
0y =

0.2m gives scrit
y = 0.44m.

20.2 Fundamental Diagram for Single-File Traffic

1. Because only the most interacting leader and follower matters for the longitu-

dinal dynamics, the acceleration consists of five forces: free-flow force, inter-

acting force from leader and follower, and the two boundary forces. Because

of the lateral boundary forces, the subject vehicle will center itself on the road

with equal gaps syb to the boundary:

v̇ = f free(v)+ f CF,int(s,v,vl)−λ f CF,int(s f ,v f ,vl)−2 fb,max exp

(

− syb

s0b

)(

v

v0

)

.

In the steady state, we have v̇ = 0, same speeds v = vl = v f of subject, leader,

and follower, and same gaps s = s f of the subject to the leader and the follower

to the subject. Thus,

0 = f free(v)+(1−λ ) f CF,int(s,v,v)−2 fb,max exp

(

− syb

s0b

)(

v

v0

)

.

2. The FVDM interaction force at the steady state for gaps s0 ≤ s ≤ s0 + v0T is

given by

f FVDM,int = f FVDM − f FVDM,free =
vopt(s)− v

τ
− v0 − v

τ
=

1

τ

(

s− s0

T
− v0

)

.

Notice that the FVDM relative-speed term proportional to γ drops out at the

steady state.

3. We consider separately the case of free traffic flow (only interactions with the

road boundaries) and interacting traffic.

Free traffic. Here, we have f CF,int(s,v,v) = 0 and we obtain the condition

0 = f free(v)−2 fb,max exp

(

− syb

s0b

)(

v

v0

)

=
v0 − v

τ
−2 fb,max exp

(

− syb

s0b

)(

v

v0

)

which can be solved for v as
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v = v∗0 = v0/ f , f =

[

1+2τ
fb,max

v0
exp

(

− syb

s0b

)]

.

Interacting traffic. For λ = 0, we do not need a decomposition of the FVDM

in a free and interacting force. At steady state with a gap s0 ≤ s ≤ s0 + v∗0T , the

force balance reads

0 =
1

τ

(

s− s0

T
− v

)

−2 fb,max exp

(

− syb

s0b

)(

v

v0

)

.

Solving for v gives

v = ve =
s− s0

T ∗ , T ∗ = T f = T

[

1+2τ
fb,max

v0
exp

(

− syb

s0b

)]

.

This means, the time gap T ∗ is increased by a factor of f > 1 by the boundaries,

and the steady-state speed is reduced by the factor 1/ f .

4. Even without leading vehicles, the boundaries reduce the desired speed and

the factor 1/ f shrinks exponentially when increasing the gaps to the boundary

which both is plausible: Drivers generally do not traverse very narrow roads

at the same desired speed that they would use for a wider road. With leading

vehicles, the influence of the road boundaries increases the desired gap by the

factor f or, at a given gap, the speed is reduced by the factor 1/ f as in the

free-flow scenario.

5. Numerical value for f if the road is as wide as the vehicle (syb = 0): f = 2.0.

6. If there are solid structures at the sides of the road, it would not be a good idea to

drive at half the desired speed grazing the structures. For this case, the boundary

interaction needs to be changed, e.g., by an additional factor s0b/syb diverging

for lateral gaps tending to zero.

Problems of Chapter 21

21.1 Locating a Temporary Bottleneck

From the data of floating car 3, we know that this car leaves a jam, i.e., crosses its

downstream boundary, at the spatiotemporal point A depicted in the diagram below.

From the data of detector 2 (point B), we know that this front is moving. We can

exclude that the transition from congested to free traffic recorded by detector 2 at

point B corresponds to a downstream moving upstream front because (i) detector D1

records essentially constant traffic flow, (ii) the data of the detector D2 and the float-

ing car 3 imply an upstream propagating upstream jam front, i.e., a growing jam.

Hence, the upstream front is propagating backwards as long as it exists.

From Stylized Fact 2 we know that downstream fronts are either stationary or

move at a constant velocity ccong. Hence, the set of possible spatiotemporal points

indicating when and where the road closure is lifted, lies on a line connecting the
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points A and B at a position x> xA. The end of the road block not only sets the down-

stream jam front into motion but also leads to a transition empty road → maximum-

flow state. The shockwave formula (9.9) implies that this front propagates with the

desired free-flow speed v0. Microscopically, this transition is given by the first car

passing the accident site. This car is recorded as first trajectory of the trajectory data

from the bridge at point C. Assuming, for simplicity, an instantaneous acceleration

to the speed v0, another set of possible spatiotemporal points for the removal of the

road block is given by a line parallel to the first trajectory and touching it at point C

(dashed line in the diagram). Intersecting the lines AB and the line parallel to the

trajectories and going through C gives us the location and time of the lifting of the

road block by the intersecting set of the two lines (point D), and also the location of

the accident.

To estimate the time when the accident occurred, we determine the intersection F

of the line x = xD of the temporary bottleneck, and the line representing the extrap-

olation of the last trajectory (point E) to locations further upstream (dashed line).

Finally, because of the constant inflow recorded by D1, we know from the shock-

wave formula that the upstream jam front propagates essentially at a constant ve-

locity, i.e., it is given by the line intersecting F and G. The jam dissolves when the

upstream and downstream fronts meet at point H.
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21.2 Estimating the Location of a Jam Front from Stationary Detector Data

The qualitative situation is depicted in following figure:
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t 2c t diss
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D3

0 3600 s

1200 veh/h

t

x

Rush hour

Jam

Outflow 1500 veh/h

1500 veh/h

1600 veh/h Normal demand

Bottleneck

1. The transition between the two free-flow states “normal demand” (light green

in the figure) and “rush hour” (dark green) propagates at the velocity V0 =
4km/120s = 120km/h. The same propagation velocity also applies to the

boundary between free flow and outflow confirming V0 = 2km/60s= 120km/h.

Furthermore, the outflow is equal to the bottleneck capacity, hence CB =
1,500veh/h.

2. Since the velocity of the transition jam-outflow is zero, the flows of the two

states must be the same. Hence, the reading Q2 = 1,500veh/h of Detector D2

after tc2 = 1,270s confirms the bottleneck capacity. To calculate the velocity cup

of the transition rush-hour flow to congestion, one needs to solve the equation

for the propagation times of the transition fronts,

t2c =
xB

V0
+

x2 − xB

cup
,

for cup resulting in

cup =
x2 − xB

t2c − xB
V0

=−0.893m/s.

The traffic breakdown occurs always at the bottleneck, so, we go along the jam

front back in time to arrive at

tbreakd = t2c −
xB − xD2

|cup|
= 150s.

3. With w=−5m/s, the shockwave propagation formula for t > t2c gives the same

result:

cup =
Qrush −QB

Qrush−Qmax

V0
+ Qmax−QB

w

=−0.893m/s

(One could also solve the shockwave formula for w to obtain the estimate di-

rectly).
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4. The information from the upstream Detector D1 that the rush hour is over prop-

agates with V0 towards the upstream jam front. The time where this transition

fronts meets the upstream jam front defines the time tm of the maximum jam

extension: With respect to the observed transition time t2c at D2, the crossing

condition reads

x2 + cup (tm − t2c) = xD1 +V0(tm −3,600s).

Solving for tm gives tm = 3,656s. Vehicles arriving at the jam at time tm (or

passing D1 at the time 3,600 s where the rush hour ends) will encounter a jam

of length

lmax = |cup|(tm − tbreakd) = 3,130m

resulting in a time delay of

τdelay = lmax

(

ρjam

Qjam

− 1

V0

)

= 240s,

where Qjam = QB = 1,500veh/h and ρjam = Qmax(1/V0 − 1/w) +Qjam/w =
44.4veh/km have been used. Notice that, in order to get the delay time, we need

to subtract the free-flow travel time L/V0 from the “jam time” lmaxρjam/Qjam.

5. The dissolution time is easily obtained by the crossing time of the downstream

moving jam front after the rush hour (Qin = 1,200veh/h, propagation velocity

c′up > 0) with the bottleneck location:

c′up =
Qin −QB

Qin−Qmax

V0
+ Qmax−QB

w

= 2.419m/s,

tdiss = tm +
lmax

c′up

= 4,950s.

Once the jam has dissolved, the front between the states outflow (Q= 1,500veh/h)

and the normal demand (Qin = 1,200veh/h) propagates at velocity V0, i.e.,

reaches D3 just a time interval ∆ t = (x3 − xB)/V0 = 30s after the dissolution.

6. Additional FC trajectories give information (x
up
i , t

up
i ) about the location of the

jam front at a given time. These additional data points can be used to calibrate

the LWR parameters of the shock-wave formula (9.45) in real time using as

MoP the location of the jam front. Of course, in reality, we have fluctuating

demand and predicting the jam front at the FCD times t
up
i using (9.45) implies

solving a delay-differential equation. Still, this is straightforward.

Problems of Chapter 22

22.1 Criteria for Estimating Travel Times by N-Curves

This method works exactly on roads with a single lane per driving direction and
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without ramps or other non-flow-conserving bottlenecks. Without floating cars,

initialization and corrections of the cumulated vehicle numbers are possible on a

heuristic basis, only. If the past speed data indicate free-flow speed and there are no

fast-growing differences Ni −N j between the N-curves of the detectors i and j, one

assumes that there is free traffic in between, and initializes/corrects the N-curves

by Eq. (22.10) with the density estimated by the average flow divided by the av-

erage speed. During the evolution of a jam (indicated by fast growing differences

Ni −Ni+1), there are no correction possibilities without floating cars.

22.2 Estimating Travel Times from Aggregated Detector Data

Subproblem 1. The following figure displays two possibilities leading to the ob-

served zero traffic flow at detector D2 between 16:00 and 16:30 h: (1) The accident

happens upstream of D2 causing a temporarily empty road (ρ = 0, Q = 0) near the

detector location D2. (2) The accident happens downstream of D2 causing tempo-

rarily blocked traffic (ρ = ρmax, Q = 0) near the detector location D2.

Outflow

from jam
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t17:0016:3016:00
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inflow

constant

road section
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constant

Outflow

from jam

x
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D2

road section
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jam

jam

Subproblem 2. Assuming a free-flow speed of 120 km/h, it takes τ12 = 2min= 120s

to pass the 4 km long section between the detectors D1 and D2. In this time interval,

∆n = 60 vehicles have passed D1. Setting the cumulated vehicle count N1(0) =
0 for the time 16:00 h (corresponding to t = 0), we obtain N2(0) = 60. With this

initialization, we calculate the cumulated vehicle count as a function of time, i.e.,

the N-curves, N1(t) and N2(t), by piecewise integration of the flows given in the

problem statement:

N1(t) =















60+0.5 t t < 2,520,
1,320 2,520 ≤ t < 3,000,
1,320+(t −3,000) = t −1,680 3,000 ≤ t < 3,480,
1,800+0.5 (t −3,480) = 60+0.5 t t ≥ 3,480,

and

N2(t) =















0.5 t t < 0,
0 0 ≤ t < 1,800,
t −1,800 1,800 ≤ t < 3,600,
0.5 t t ≥ 3,600.

Subproblem 3. Sketch of the N-curves:
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The realized travel time τ12(t) at time t = 2,400s can be read from the diagram

by the length of the horizontal line at height N = N2(2,400) = 600s intersecting

the curves N1(t) and N2(t): τ12(t = 2,400) ≈ 1,300s (exactly: 1260, see below).

The expected travel time τ̃12(t) at time t = 2,400s is equal to the length of the

horizontal line at height N1(2,400) = 1,250 intersecting the two N-curves: τ̃12(t)≈
600s (exactly: 660).

Subproblem 4. The diagram of the N-curves shows that, when estimating τ̃12(t)
within the time interval −120s ≤ t < 2,520s, the horizontal line intersecting the N-

curves has a height N between N1(−120) = 0 and N1(2520) = 1320. We determine

its length between the intersections with the N-curves using the results of subprob-

lem 2:

N1(t) = N2(t + τ̃12)

60+
t

2
= (t + τ̃12)−1,800 ⇒ τ̃12 = 1,860− t

2
.

For t < −120s, we have τ̃12 = 120s, i.e., equal to the free-flow travel time. At

t =−120s, there is a jump from 120 to 1,920, i.e., by 1,800 s or 30 min. This corre-

sponds to the waiting time difference between the last vehicle that can pass before

the road closure becomes active (possibly the car causing the accident), and the car

after it having to wait the full duration of the road block.

For τ12(t) within the time interval 1,800s ≤ t < 3,120s, we obtain analogously

N1(t − τ12) = N2(t)

60+
1

2
(t − τ12) = t −1,800 ⇒ τ12 = 3,720s− t .

Subproblem 5. Since, according to the problem statement, the floating car slows

down sharply when passing D2 at 16:00 h, the accident happened downstream of

D2 somewhat before 16:00 h. This corresponds to situation (2) discussed in sub-

problem 1 above.

22.3 Costs of Motorway Congestion Estimated from Floating-Car Data

1. The total vehicle travel time (22.3) inside jams can be expressed by τtot =

∑t ∑st
nts∆ t as sum over all updates ∆ t and all congested road segments s with
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nts vehicles in each at time t. The delay time is calculated by subtracting the

travel times for free traffic,

τdelay = τtot − τfree = ∑
t

∑
st

(

nts −nfree
ts

)

∆ t = ∑
t

∑
st

nts

(

1− Vts

V 0
ts

)

∆ t

where the last expression follows from vehicle conservation assuming steady

states and a known free-flow speed V 0
ts. The number of vehicles nts in each

congested road segment of length Ls with the number of lanes Is known from

a digital map is given by n = ρ totLs = IsρLs = Isρcong(Vts)Ls. To estimate the

congested density per lane, we assume a triangular fundamental diagram whose

congested speed-density relation is given by Eq. (9.33),

V (ρcong) =
Q(ρcong)

ρcong
=

Qmax

ρcong

(

1− w

V0

)

+w

with measurable parameters for the free-flow speed V0, the maximum flow per

lane Qmax (approximately 2,000 veh/h/lane on highways), and the wave speed

w ≈−15km/h. With the known speed Vts and the inverse relation

ρcong(V ) =
Qmax

(

1− w
V0

)

V −w
,

the number of vehicles in a congested road segment at time t can be estimated

as

nts = IsLsρcong(Vts) ,

and the total and additional travel times by summing over all times and con-

gested segments.17

2. The socioeconomic costs of congestion include loss of time, changed fuel con-

sumptions/emissions, additional accidents, delay costs (e.g., missed appoint-

ments or broken just-in-time supply chains), and other external costs. Focussing

on direct costs (time loss and increased fuel costs) we will show in Chap-

ter 23 that increased fuel consumption is negligible (there may even be a de-

creased fuel consumption). Estimating the costs of loss of time from the de-

layed vehicle-hours, we need to assume an average value of time (VoT), 10e/h

for instance, and an average occupancy of 1.2 persons/veh for example. Then,

the monetary costs are just the delayed vehicle-hours multiplied with the VoT

and the occupancy according to following table.

17 Note that, unlike the congested density, the free-flow density can not be estimated from local

speeds if the penetration level is unknown. Conversely, the penetration level could be estimated

from the absolute number of vehicles in congested segments (cf. Sect. 4.7.1).
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Country Motorways τdelay Direct Costs Motorway Specific

(km) (mill. h/year) (mill. e/year) Costs (e/km/year)

NLD 5,500 62.0 744 135,000

GBR 7,500 61.0 732 97,600

DEU 27,400 195 2340 85,400

Problems of Chapter 23

23.1 Coefficients of a Statistical Modal Consumption Model

Assuming a constant specific consumption Cspec = 1/(γwcal) (purely analytic physics-

based model) and inserting Eqs. (23.13), (23.7), and (23.5) into Eq. (23.15) gives

following function for the instantaneous model consumption:

Ċ =CspecP = Cspec max [0,P0 +Fv]

= Cspec max

[

0,P0 +mvv̇+m(µ +φ)gv+
1

2
cdρAv3

]

.

Apart from the maximum condition, this is a parameter-linear function whose pa-

rameters β j can be easily estimated by conventional multivariate regression. Com-

paring this function with the statistical model specified in the problem statement and

using Table 23.2 gives following relations and values for the model parameters:

β0 =CspecP0 = 242 ·10−6 liters/s

β1 =Cspecmgµ = 11.9 ·10−6 liters/m

β2 = 0

β3 = 1
2
CspeccdρA = 31.4 ·10−9 literss2/m3

β4 =Cspecm = 121 ·10−6 literss2/m2

β5 =Cspecmg = 1.19 ·10−3 liters/s.

The following figure gives a plot of this function:
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23.2 Coefficients of the VT-micro Model

The VT-micro model (23.3) reads

Ċ = eP, P =

{

∑i, j Li jv
iv̇ j v̇ ≥ 0

∑i, j Mi jv
iv̇ j v̇ < 0

and the physics-based model (23.15) with constant efficiency factor or specific con-

sumption cspec

Ċ =Cspec

(

P0 +µmgv+mdynvv̇+
1

2
cdρAv3

)

with the physical parameters explained in Table 23.2. In order to find the terms of

the VT-micro model for v̇ ≥ 0 corresponding to the physics-based model, we write

the VT-micro model as

Ċ = eL00 exp

(

∑
i, j

Li jv
iv̇ j −L00

)

which, for the limit v → 0 and v̇ → 0, allows to immediately identify eL00 =CspecP0,

so

L00 = ln(CspecP0) =−8.33 .

To identify the remaining parameters L10, L11, and L30, we could identify

ĊVTmicro =CspecP0 exp
(

l10v+L20v2 +L30v3 +L11vv̇+ . . .
)

with

Ċphys =CspecP0

(

µmg

P0
v+

cdρA

2P0
v3 +

mdyn

P0
vv̇

)

and perform a Taylor expansion around v = 0 and v̇ = 0. However, because of the

nonlinear exponential function, such an expansion will only be valid for very low

speeds and accelerations. In fact, the VT-micro model only produces valid results

for a complete set of factors and quickly will result in unphysical values outside its

calibrated range.

23.3 An Acceleration Model for Trucks

To solve this problem, we only need the power module of the physics-based modal

consumption/emissions model. Assuming a constant engine power P and solving

Eq. (23.7) for the acceleration gives

v̇P(v,φ) =
P−P0

mv
−g(µ +φ)− 1

2
cdρAv2.

To include the restraints “maximum acceleration amax” and “no positive acceleration

at speed v > v0”, we obtain the final form of the free-flow truck acceleration model:
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v̇(v,φ) =

{

min(amax, v̇P(v,φ)) v ≤ v0

min(0, v̇P(v,φ)) v > v0.

Following plot shows that the engine power is just sufficient to drive the truck at

80 km/h along a 2% uphill gradient with maximum power.
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23.4 Characteristic Map of Engine Speed and Power

“Full throttle” corresponds to the top part of the allowed operating region for a given

engine speed, i.e., to the top contour line of Fig. 23.3(c) or (d). At 3,000 rpm, it cor-

responds to 70 kW. For a power demand of 60 kW, an engine speed f = 3,300rpm

(or the speed nearest to this value allowed by the transmission) results in most effi-

cient fuel usage (determine this again using Fig. 23.3(c) or (d)).

23.5 Characteristic Map of Engine Speed and Mean Effective Pressure

(i) 60 kW; (ii) An engine speed of 2,600min−1 results in a specific consump-

tion of about 300 ml per kWh while, at 4,000min−1, the specific consumption is

≈ 350ml/kWh. The first option is more efficient although the throttle pedal needs

to be pressed down further than for the higher engine speed because, for 2,600 rpm,

the distance to the full-throttle maximum is lower than for 4,000 rpm).

23.6 Does Jam Avoidance Save Fuel?

At high vehicle speeds, the aerodynamic drag becomes dominant and the consump-

tion per kilometer increases nearly quadratically. Therefore, the savings potential

decreases and can even become negative (when comparing homogeneously flowing

congested traffic with high-speed free traffic).

23.7 Influencing Factors of Fuel Consumption

Combining Eqs. (23.19), (23.13), (23.7), and (23.5) for the purely analytical physics-

based model (constant specific consumption), we obtain following relation for the

consumption per travel distance:

Cx =
dC

dx
=Cspec max

[

0,

(

P0

v
+mv̇+(µ +φ)mg+

1

2
cdρAv2

)]

. (13)

1. Air condition. Correct. The additional power ∆P0 results in an additional con-

sumption ∆Cx =Cspec∆P0/v which increases for decreasing speed. (Numerical val-

ues for ∆P0 = 4kW: 2.9 l/100 km at 40 km/h and 1.45 l/100 km at 80 km/h.)
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2. Roof rack: False. It is true that the increased cd value increases the consumption

per distance by ∆Cx =Cspec∆cdρAv2/2. However, this increase grows quadratically

with the vehicle speed, i.e., it is lowest for city traffic. (Numerical values for ∆cd =
0.08: 0.41 l/100 km at 80 km/h and 1.65 l/100 km at 160 km/h.)

3. Disconnecting the clutch when driving downhill. False. If the clutch is discon-

nected, the driving shaft is decoupled from the generator and the overrun fuel cut-

off cannot operate. In this case, the instantaneous consumption rate is given by the

idling consumption rate Ċ0 = CspecP0 leading to Cx0 = CspecP0/v for the consump-

tion per distance. With the clutch connected, the fuel consumption Cx is less than Cx0

if F < 0, and the overrun fuel cut-off is fully operative, i.e., Cx = 0, if F < −P0/v.

(Numerical values at 50 km/h: Cx0 = 1.74 l/100km; downhill gradient where the

driving resistance F is equal to zero: −1.51%; downhill gradient where the overrun

fuel cut-off is fully operative: −2.98%.)

4. Only use half the capacity of the tank. False. At a tank capacity of 60 liters,

the average fuel volume is 30 liters for the cycle full–empty–full etc., and 15 liters

for the cycle half-filled–empty–half-filled etc. This corresponds, on average, to

a savings of the total mass by ∆m < 15kg (since the specific mass of fuels is

less than 1 kg/liter). The resulting effect on the consumption per distance, ∆Cx =
−Cspec∆mgµ < 0.0119 l/100km, is independent of the speed v and negligible (but

the risk to run out of fuel increases).

5. Reduce speed from 50 km/h to 30 km/h. False. At speeds below the optimal value

of about 50−60km/h (cf. the figure), the consumption (13) per distance increases

with decreasing speed. Specifically, Cx = 4.3l/100km at 30 km/h and 3.5 l/100 km

at 50 km/h.
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6. Reduce speed from 150 km/h to 130 km/h. Correct. Cx = 7.2l/100km at 150 km/h

and 6.0 l/100 km at 130 km/h (cf. the figure).

23.8 Start-Stop System

The total waiting time is 360 s which, at 0.87 l/h for idling the engine means 87 ml

saved fuel. In relation to the covered distance of 5 km, this is a fuel saving of

1.74 l/100 km.
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23.9 Highway vs. Mountain Pass: Which Route Needs More Fuel?

When choosing alternative 1, i.e., driving the level highway at 150 km/h, one needs

7.2 liter per 100 km (cf. Solution to Problem 23.7).

When choosing alternative 2, i.e., driving the mountain pass at 70 km/h, one

needs fuel only for the 50% of the route going uphill while the downhill gradient

of 8% is more than enough to fully activate the overrun fuel cut-off (cf. the figure

at the solution to Problem 23.7). With Eq. (13), we obtain for the uphill sections

(φ = 0.08) a consumption Cx = 13.1l/100km. For the complete mountain pass (up-

hill and downhill), the consumption halves to Cx = 6.5l/100km which is less than

the consumption on the highway! (The balance tips over to the other side for gradi-

ents of more than 10% or when driving more slowly on the highway.)

23.10 Four-Way-Stops vs. Intersection with Priority Rules

The analysis of situation II (constant speed v0 = 16m/s) is easy: With Eq. (13), we

obtain for the 500 m long stretch between two intersections CII = LCx = 24.2ml.

For situation I, we separate the driving cycle between two intersections into three

driving modes: (i) accelerating from zero to v0, (ii) cruising at v0, and (iii) deceler-

ating to a full stop at the next intersection.

(i) Acceleration phase. With v̇ = a = 2m/s2, this phase lasts a time interval of ta =
8s during which a distance of La = v2

0/2a = 64m is covered. Because both Cx and

Ċ are variable during the acceleration phase, explicit integration is necessary. We

choose integration over time. With Eq. (23.15) and Cspec = 1/(γwcal), the integrand

Ċ reads

Ċ(t) =
dC

dt
=Cspec

(

P0 +mv̇v(t)+(µ +φ)mgv(t)+
1

2
cdρAv3(t)

)

. (14)

With v(t) = at, the integration can be evaluated analytically:

Cacc =

ta
∫

0

Ċ(t)dt

= Cspec

ta
∫

0

(

P0 +ma2t +µmgat +
1

2
cdρAa3t3

)

dt

= Cspec

(

P0 ta +
1

2
ma(a+µg)t2

a +
1

8
cdρAa3t4

a

)

.

Using ta = v0/a and La =
1
2
at2

a , we simplify this expression to

Cacc =CspecWacc =Cspec

(

P0 ta +
1

2
mv2

0 +mµgLa +
1

4
cdρAv2

0La

)

= 17.8ml .

The terms in the parenthesis of the last equation have the following meanings: P0ta is

the energy necessary to operate all the secondary appliances during the acceleration

phase, 1
2
mv2

0 is the kinetic energy at the end of this phase, mµgLa is the energy lost
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(or, more precisely, transformed to heat) by the solid-state friction, and 1
4
cdρAv2

0La

is the energy lost by the aerodynamic drag.

(ii) Cruising phase. Since both the acceleration and deceleration phases cover a

road section of La = 64m, a distance Lc = L−2La = 372m remains for the cruising

phase. Correspondingly, Ccruise =CspecWcruise = LcCx(v0, v̇ = 0) = 11.1ml.

(iii) Deceleration phase. Due to overrun fuel cut-off, no fuel is consumed in this

phase, so Cbrake = 0.18

Result for situation I. The total consumption between two intersections for the traf-

fic rules of situation I equals CI = Cacc +Ccruise +Cbrake = 31.4ml which has to be

compared with CII = 17.5ml.

In summary, the fuel saving potential of changing the traffic rules from that of

situation I to that of situation II is more than 40% which is massive.

23.11 Fuel Consumption for an OVM-Generated Speed Profile

Subproblem 1. The OVM free acceleration v̇ = (v0 − v)/τ is maximal at v = 0.

Prescribing v̇max = v0/τ = 2m/s2 gives the relaxation time τ = v0/a = 16.67s.19

Subproblem 2. We calculate the instantaneous power at a given speed v from

Eq. (23.7) with Eq. (23.5):

P(v, v̇) =
Ċ(v, v̇)

Cspec
= P0 +mv̇v+(µ +φ)mgv+

1

2
cdρAv3.

Inserting the OVM free acceleration v̇ = (v0 − v)/τ , we obtain POVM(v) = A0 +
A1v+A2v2 +A3v3 where

A0 = P0 = 3kW, A1 = m
(

gµ +
v0

τ

)

= 3,147Ws/m ,

A2 =−m
τ =−90W(s/m)2 , A3 =

1

2
cdρA = 0.39W(s/m)3 .

Subproblem 3. As usual, we calculate extremal values by setting the derivative with

respect to the interesting variable (here, the speed v) equal to zero:

dPa

dv
= A1 +2A2v+3A3v2 !

= 0 .

This quadratic equation has two solutions and corresponding extremal power re-

quirements POVM:

18 Strictly speaking, this is not true for the very last part of the deceleration phase when the speed

(ignoring aerodynamic drag) drops below vc = P0/[m(|v̇|−µg)]≈ 7km/h. This is neglected here.
19 At this value, the OVM is extremely unstable and cannot be used for simulating interacting or

congested traffic.
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v1 = 133.7m/s = 481.4km/h, POVM(v∗1) =−254kW,

v2 = 20.1m/s = 72.4km/h, POVM(v∗2) = 33.1kW.

Obviously, the second solution is the correct one since the power (and the OVM

acceleration) is negative for the first one.20 The maximum power during the accel-

eration phase is reached at 76 km/h. Its value is 32.1 kW.
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23.12 Trucks at Uphill Gradients

1. Engine power. With Eqs. (23.7) and (23.5), we obtain for the necessary power to

maintain a speed v = vlimit = 80km/h at level roads

Pdyn = P−P0 = vF(v) = µmgv+
1

2
cdρAv3 = 249kW+57kW = 306kW.

2. Initial deceleration. The two new forces entering the balance are the uphill-slope

force and the inertial force. Since, initially, all other forces remain unchanged, the

two new forces must cancel each other, i.e.,

φg+ v̇ = 0 ⇒ v̇ =−φg =

{

−0.49m/s2 at 5%gradient,

−0.39m/s2 at 4%gradient.

3. Terminal speed. Equation (23.7) also delivers the terminal speed at a gradient φ
by setting v̇ = 0 and solving for v. Neglecting the aerodynamic drag, we obtain

Pdyn = (µ +φ)gmv ⇒ v∞ =
Pdyn

(µ +φ)gm
=

{

10.2m/s at 5%gradient,

11.7m/s at 4%gradient.

4. Estimating the OVM parameters in the uphill section. Since the OVM speed ap-

proaches asymptotically the desired speed v∞, we can set the OVM “desired speed”

in the uphill sections equal to the terminal speed v∞. The initial accelerations calcu-

lated in subproblem 2 at the desired speed v0 of the level section serve to estimate τ
via v̇ = (v∞ − v0)/τ , i.e., τ = (v∞ − v0)/v̇, resulting in

τ =

{

24.4s at 5%gradient,

26.8s at 4%gradient.

20 This solution represents the minimum power requirement.
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5. Speed and distance over time. The solution to the inhomogeneous ordinary dif-

ferential equation dv
dt

= (v∞ − v)/τ for the initial condition v(0) = v0 reads (cf. the

following figure)

v(t) = v∞ +(v0 − v∞)e−t/τ ,

x(t) = v∞(t − τ)+ v0τ − (v0 − v∞)τe−t/τ .
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For the uphill section 1 of length L1 = 500m and gradient φ1 = 5%, we obtain

for the time t = t1 = 29.1s given in the problem statement:

v(t1) = 13.8m/s = 49.8km/h.

(Test: x(t1) = 500.5m.) Analogously, we obtain for the uphill section 2 of length

L2 = 1,000m and gradient φ2 = 4% at time t = t2 = 64.2s:

v(t2) = 12.6m/s = 45.2km/h.

(Test: x(t2) = 1,000.2m)

Discussion. Although the uphill section 1 is steeper, the speed of the trucks at its

end is higher than at the end of the less steep but longer uphill section 2. Therefore,

it makes sense to allow higher gradients on shorter uphill sections.

23.13 Maximum Deceleration Capability of Regenerative Braking

The maximum regenerative deceleration is proportional to the maximum torque

in the generator regime which is constant below a critical engine speed fc and

corresponding vehicle speed vc, and proportional to 1/v for higher speeds. Using

Eq (23.17) at the transition point, Pmax = 2π fcMmax, we find

fc =
Pmax

2πMmax
= 47.7s−1, vc =

2π fc

iBEV
= 23.5m/s.

At 50 km/h (13.9 m/s), we are at the torque limited regime and the maximum regen-

erative deceleration is given by

breg
max(v ≤ vc) =

F

m
=

iBEVMmax

rtire

= 3.67m/s2.
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For v= 100km/h= 27.8m/s, we are in the power limited regime, so, with P=mvv̇,

we have

breg
max(v > vc) =

P

mv
= 3.09m/s2.

Notice that we also could have calculated this deceleration by b
reg
max(v > vc) =

b
reg
max(v ≤ vc)vc/v. In summary, regenerative braking (recuperation) is possible

for most everyday braking situations but not for emergency braking maneuvers

(≈ 10m/s2) or stronger decelerations at high speeds.

23.14 Driving Patterns of Battery-Electric Vehicles

1. Basic elements of the driving patterns.

• Cruising at constant speed v0 over a distance L. Clearly, P0 + vF > 0 for a level

terrain. Since state variables are independent of x in this driving element, we

use Eq. (23.30) with (23.5). With the travel time T = L/v0 and the abbreviation

c = 1/2cdρA (c = 0.897kg/m in our example), we have

Wc(v0,L) =
P0T +mgµL+ 1

2
cv2

0L

η2
battηmot

=

(

P0
v0
+mgµ + 1

2
cv2

0

)

L

η2
battηmot

corresponding to an energy demand per distance of Wplug/L.

• Accelerating from zero to the speed v0. For the P0 term, we need the time

Ta = v0/a. For the constant rolling friction term, we use Eq. (23.30) resulting

in
∫

F(x)dx = mgµLa with the acceleration distance La = v2
0/(2a) = v0Ta/2 (cor-

responding to the braking distance at −a). For the inertial part, we use Eq. (23.29)

with

∫ Ta

0
mdynvv̇dt =

mdyn

2

∫ Ta

0

d

dt
(v2)dt =

mdyn

2

[

v2
]v=v0

v=0
=

mdyn

2
v2

0.

Finally, for the wind-drag part, we use the time integral of Eq. (23.29) as well:

∫ Ta

0
v
( c

2
v2(t)

)

dt =
c

2

∫ v0/a

0
a3t3dt

=
ca3

8

[

t4
]t=v0/a

t=0

=
cv4

0

8a
=

cv3
0

8
Ta =

cv2
0

4
La,

where La = v0Ta/2 has been used at the last equality sign. Putting all together,

we have

Wa(v0,a) =

(

2P0
v0

+mgµ + 1
4
cv2

0

)

La +
1
2
mdynv2

0

η2
battηmot

, La =
v2

0

2a
.



736 Solutions to the Problems

• Decelerating from speed v0 to zero. Assuming that one is always in the regener-

ative braking regime, the derivation is along the lines of the acceleration regime

resulting in the above expression with a reversed sign for the dynamic contribu-

tion and the γ value for recuperation,

Wb(v0,b) =

[(

2P0

v0
+mgµ +

1

4
cv2

0

)

Lb −
1

2
mdynv2

0

]

ηmot, Lb =
v2

0

2b
.

The approximation of always being in the regenerative braking regime is valid as

long as v > vc given by P0 +mgµvc −mdynvcb = 0 resulting in

vc =
P0

mdynb−mgµ

evaluating to vc = 0.25m/s, in our case. Therefore, this approximation only en-

tails minimal errors.

• Waiting a time Tstop. This is just given by

Ww(T ) =
P0T

η2
battηmot

.

2. Driving patterns “residential area” and “arterial”.

• Pattern 1: Residential area. We have a total length of L = 1,000m, a maximum

speed v0 = 30/3.6m/s, and n = 5 acceleration and deceleration phases at a =
b = 2m/s2. Hence

W residential
plug = 5Wb(v0,b)+5Wa(v0,a)+Wc(v0,L−5(La +Lb))

= 655000Ws = 0.182kWh

where La = Lb = v2
0/a = 17.4m has been used.

• Pattern 2: City arterial. In analogy to above, we have

W arterial
plug = Wb(v0,b)+Ww(Tw)+Wa(v0,a)+Wc(v0,L− (La +Lb))

= 618000Ws = 0.172kWh

where v0 = 50/3.6m/s, La = Lb = v2
0/a = 48.2m, and Tw = 30s has been used.

23.15 Under Which Conditions Do All-Electric Cars Save CO2 Emissions?

For the BEV, the indirect CO2 emissions per km can be calculated from the defini-

tion of the carbon intensity Cel
CO2

= 0.35kg CO2/kWh of the used mix of electricity

generation and the fact that the values for Wplug already calculated in the previous

problem 23.14 and in the main text Section 23.4.4 directly give the electricity de-

mand including charging losses,

eBEV
CO2

=Cel
CO2

Wplug.
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For the ICE, the CO2 emissions are calculated using the definition of the specific

consumption Cspec = 0.29l/kWh (transforming the needed energy for driving and

appliances into used fuel) and the well-to-wheel carbon intensity (sum of well-to-

tank and tank-to-wheel emissions) Cw2w
CO2

= 2.79kgCO2/l transforming used fuel

into CO2:

eICE
CO2

=Cw2w
CO2

CspecWICE.

Since all engine losses are already characterized in the specific consumption and

“charging” the ICE (i.e., filling it up) is lossless, the expressions for the ICE energy

demand in the five patterns are that for BEVs with ηbatt and ηmot set to unity. Fur-

thermore, because ICEs cannot recuperate, all negative energy/power contributions

are set to zero (overrun fuel cut-off). The results are given in Table 23.4 in the main

text.

Problems of Chapter 24

24.1 Discrete-Choice Models for the Routing Decision

1. General binary discrete-choice model. Since a homo oeconomicus will always

choose the alternative with the highest total utility Ui, the probability of choosing

alternative i = 1 out of two alternatives is just given by P1 = prob(U1 ≥U2). Insert-

ing the decomposition Ui = Vi + εi, separating the deterministic and random terms

and using the definition of the cumulative distribution function F(x) = prob(X ≤ x)
of a random variable X , we obtain

P1 = prob(V2 + ε2 ≤V1 + ε1)

= prob(ε2 − ε1 ≤V1 −V2)

= Fε2−ε1
(V1 −V2).

2. Binary Logit model. With Fε2−ε1
(x) = Fε1−ε2

(x) = 1/(1+ e−x), we obtain

P1 =
1

1+ eV2−V1
=

eV1

eV1 + eV2
.

3. Meaning of the model parameters. If the travel time of alternative i increases by

∆Ti, the utility increases by βT ∆Ti, so, obviously, βT < 0. Since εi is dimension-

less with a variance near unity,21 this means that an increment ∆Vi = βT ∆Ti = 1

essentially corresponds to a change by one standard deviation of the random utility.

Hence, 1/βT essentially corresponds to the standard deviation of the random utility

if measured in minutes. The parameter β1 gives an ad-hoc “bonus” for alternative 1

for the case of equal travel times in multiples of the standard deviation of the ran-

21 The precise value depends on the model but it is always near 1. For the Logit model, we have

Var(εi) = π2/6.



738 Solutions to the Problems

dom utility. We expect β1 ≥ 0 since, generally, driving an unknown deviation is

more stressful than just following the main route.

4. Application to the route-choice decision. Only the fraction α of drivers is “in the

know” and willing to potentially use the deviation is eligible for the discrete choice.

Hence, the probability P2 of drivers actually using the deviation is the product of the

probability for being eligible and the conditional probability of choosing route 2 if

eligible, hence

P2 = αP
Logit
2 =

αeV2(t)

eV1(t)+ eV2(t)
, P1(t) = 1−P2(t),

which is Eq. (24.2) of the main text.

24.2 User Equilibrium and System Optimum in Dynamic Navigation

1. Travel times. In an empty network, the maximum speed V0 (which here is the

same on both routes) can be driven, so

T01 =
L1

V0
= 750s, T02 =

L2

V0
= 800s.

2. User equilibrium I: Qualitative considerations. Once an inflow Qin = 5,400veh/h

arrives, all drivers will first choose R1 since T10 < T20. However, since Qin > CB
1 ,

a traffic jam will form behind the bottleneck. New incoming drivers with a perfect

knowledge of the instantaneous travel times on both routes will still select R1 until

the travel time Ti has increased near T20. Then, some drivers will select R2 such that

the length of the jam on R1 remains constant at T1 ≈ T20. However, this will only

happen in the presence of noise, σT > 0. Otherwise, we have a bang-bang control

which, in the presence of delays, will always lead to oscillations. Since there is no

hysteresis or capacity drop in LWR models, the flow on R1 in the user equilibrium

(UE) and the corresponding flow on R2 are given by

Q
tot,UE
1 =CB

1 = 4,860veh/h, Q
tot,UE
2 = Qin −Q

tot,UE
1 = 540veh/h.

The resulting flow Q
tot,UE
2 is well below the bottleneck capacity CB

2 , so no jam will

form on R2.

Length of the congestion on R1 in user equilibrium. The length x of the congestion

on R1 in user equilibrium is given by the condition of equal travel times on both

routes:

T1 =
x

Vcong
+

L1 − x

V0

!
= T20,

or

x =
T20 − L1

V0

1
Vcong

− 1
V0

.
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In order to obtain the speed Vcong in the congestion, we observe that the congested

flow per lane on the three-lane road is given by Qcong =CB
1 /3. Since the wave speed

w is the slope of the congested branch of the triangular fundamental diagram, and

Qcong = 0 for ρ = ρmax, the associated density is determined by Qcong =w(ρ−ρmax)
or

ρcong = ρmax +
Qcong

w
= ρmax +

CB
1

3w
= 60veh/km,

whence

Vcong =
Qcong

ρcong
= 7.5m/s, x = 600m.

3. System optimum (SO). Since T10 < T20, the system optimum implies that as many

vehicles as possible take R1 without producing a jam. This means Q
tot,SO
1 = CB

1 as

in the user equilibrium. However, vehicles are sent on R2 before a jam can form, so

that T2 > T1 which means, the SO is no equilibrium configuration, whether stable or

unstable. In summary, we have

Q
tot,SO
1 = Q

tot,UE
1 = 4,860veh/h, Q

tot,SO
2 = Q

tot,UE
2 = 540veh/h,

and

T1 = T10 = 750s, T2 = T20 = 800s,

T̄ =
Q

tot,SO
1

Qin

T1 +
Q

tot,SO
2

Qin

T2 = 0.9T1 +0.1T2 = 755s.

4.1 Necessary conditions for a UE as calculated previously, both the UE and SO

require that a percentage

PSO
2 =

Qin −CB
1

Qin

= 10%

diverts to the deviation. If the uncertainty σT is sufficiently small, σT ≪ T02 −T01,

all equipped drivers will divert as soon as the jam on Route 1 reaches its UE length

but not earlier thus stabilizing the UE. Obviously, this is only possible if there are

enough equipped vehicles, α > PSO
2 . If, however, α is significantly greater than

PSO
2 , oscillation instabilities will form. If σT is no longer ≪ T02 −T01, oscillations

are suppressed but some drivers will already use Route 2 before the UE length of

the jam is reached leading to a situation between the UE and SO.

4.2 Necessary conditions for a SO. In order that a SO is sustained, a fraction PSO
2 of

drivers must use Route 2 right at the beginning, i.e., use a route which is longer by

the time difference T02 −T01. In order to do this, the uncertainty must be at a certain

level given by

P2 =
α

eV01−V02 +1
=

α

e
T02−T01

σT +1

which can be solved for α resulting in Eq. (24.21) of the main text,
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α = PSO
2

(

e
T02−T01

σT +1

)

.

Additionally, we must require P2 < 50% because, otherwise, Condition (24.21) can

never be met.

Necessary conditions for no jam on Route 2. Congestions on both routes are

avoided in the steady state if PSO
s ≤ P2 ≤ Pmax

2 where Pmax
2 is calculated from the

maximum flow QinPmax
2 = CB

2 that Route 2 can accommodate without becoming

congested, so

Pmax
2 =

CB
2

Qin

= 20%.

In terms of α , this means

α ≤ Pmax
2

(

e
T02−T01

σT +1

)

which is the second condition of (24.21).
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