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Traffic Flow Dynamics and Simulation

Summer semester, Solutions to Work Sheet 11, page 1

Solution to Problem 11.1: Pilgrimage in Mekka

(a) Density: Pedestrians are moving in a 2d area, so only a definition of the density as #
pedestrians per m/s2 makes sense:

[ρ] = 1m−2

(of course, in a ingle-file environemnt, we still have #per per meter) Flow: For a cross
section (width) of the pedestrian pasageway of more than about W = 1.5m, the flow [#
pedestrians per second] at a given density increases proportional to the width W .1. So,
in this case, the flow Q [#ped/s] scales as

Q = Jw

where the proportionality factor denotes the additional flow per meter of cross section.
Hence, it is appropriately named flow density

[J ] = 1ms

J denotes the number of pedestrians per second and per meter of cross section.2

(b) Typically, when observing pedestrian flow, one records a video from a fixed position
(or a drone) and extracts trajectories (xi(t), yi(t)) for all pedestrians out of it. Because
of this full microscopic information, systematic errors can be avoided by appropriate
analysis/interpretation, e.g., as described in part (b).

Notice that for irregularly moving pedestrians (as on Christmas markets), only density
but no flow or flow density makes sense

(c) Extracting the macroscopic quantities from tajectory data

– Density ρ(x, y, t) Use a video still at time t and count all pedestrians that are inside
a circle of radius r centered at (x, y):

ρ(x, y, t) =
#pedetrians in circle

πr2
=

∑

i 1

πr2

1This is valid for unidirectional use; for bidirectional use, the minimum width is larger; for pedestrians moving
in all directions, the concept flow is not well defined

2In lane-based vehicular traffic, this proportionality corresponds to the proportionality of the capacity with
the number of lanes. In fact, one could define a flow density J = Q/Wlane by dividing the flow by the lane
width Wlane.
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r
(x,y)

* r ≈ 3m should be microscopically large (contains several pedestrians) and ma-
croscopically small (smaller than the scale of the spatial structures to be resol-
ved)

* You could also use more refined kernels, e.g., cone-like or 2d Gaussian

* Alternatively, you could define

ρ(x, y, t) = 1/Avoronoi

where Avoronoi is the area of the Voronoi cell containing the point (x, y)

– Local space-mean speed/velocity V (x, y, t): just take the arithmetic average of
the speed/velocity of the pedestrians inside the circle or the speed of the pedestrian
in its Voronoi cell:

V (x, y, t) =

∑

i vi
∑

i 1

– Flow density J(x, y, t): define a line of length L < W perpendicular to the flow
and centered at (x, y) and determine the #pedestrians crossing this line in the time
interval [t− τ/2, t+ τ/2]:

J(x, y, t) =
#pedestrians crossing

Lτ

(x,y) b

L and τ should be microscopically large and macroscopically small, e.g., L = 2m,
τ = 5 s.

(d) (i) Approximate parameters of the triangular fundamental diagram

J(ρ) = min (ρV0,−(ρmax − ρ)w)

European event (blue flow-density data):

www.mtreiber.de/Vkmod Traffic Simulation, Summer semester Solutions to Tutorial 11, page 2



“Friedrich List” Faculty of Transport and Traffic Sciences Chair of Econometrics and Statistics, esp. in the Transport Sector

– Maximum density by the intersection of the extrapolated flow-density points with
the x axis:

ρmax = 5.5 ped/m2

(no bias expected since the true spatial density can be estimated from the data)

– Desired speed from the gradient of the flow-density data for very low densities:

V0 = 1m/s

– Wave velocity w by the gradient of the points on the congested side:

w = −2ms)−1/ρmax = −0.35m/s

(Notice that the time gap T does not make sense in the 2d context. It would have
the unit sm (second time meter) and the value (intersection of the congested branch
with the y axis) of about T = 2 sm. Hence, it is better to use the wave velocity w
as the primary parameter.)

Hajj pilgrimage: A triangular FD does not make sense

(ii) Approximate parameters for the parabolic Greenshields fundamental dia-
gram

J(ρ) = V0ρ

(

1− ρ

ρmax

)

European event (blue flow-density data):

– Maximum density: A bit lower than for the triangular case, ρmax ≈ 5 ped/m2

– Desired speed: Such that the observed specific capacity Jmax = 1.5 ped/(sm) is the
same as the theoretical one,

Jmax =
V0ρmax

4
⇒ V0 =

4Jmax

ρmax
= 1.5m/s

Hajj pilgrimage:

ρmax = 10m/s2,

V0 =
4Jmax

ρmax
=

8 /(ms)

10m/s2
= 0.8m/s

Notice that there is a discrepancy between this estimation and the gradient of the points
for density to zero (about 1m/s) which arises from the fact that neither the triangular
not the Greenshields FD fit the data.3

3These data look like there was a measuring artifact/a wrong estimation method for the high values or the
density, or that the pedestrian flow entered in a new phase.
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(e) This can be best explained for the free-flow part, where the isotropic condition ρ = ρ21d
gives the free-flow relation

Q = JL = ρV0L = ρ21dV0L,

increasing quadratically with the 1d density. This strange result becomes plausible when
realizing that, at very low densities, doubling the 1d density means a double flow within
each single file and also the double number of single files.

In effect, a single file just needs the lateral space

Wped =
1√
ρmax

,

so, for single-file dynamics, we effectively have

ρ = ρ1d
1

Wped
, ρmax = ρ1d,max

1

Wped

and for the triangular FD the flow

Qsingle = WpedJ = Wped min(ρV0,−(ρmax − ρ)w) = min(V0ρ1d,−(ρ1d,max − ρ)w)

with ρ1d,max = 1/Wped and the value ρ1d,max = 2.3 ped/m for the European event.

This results in an unchanged wave velocity w and the effective desired time gap for
congested single files:

T = − 1

wρmax,1d
≈ 1, 2 s

Remarkably, the implicit time gap for pedestrians is of the same order as that for cars in
city or freeway traffic
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Solution to Problem 11.2: Social Force Model

(a) – B: range of the interaction: If one is sufficiently far away from the target pedestrian
(distance |~x| ≫ |δ~d), the minor semi-axis b essentially becomes equal to the distance
because, then, the ellipse with focal points a distance δ~d from each other and contai-
ning the point ~x converges to a circle of radius |~x| = b. Therefore, the potential and
the force decays by a factor of 1/e when the distance is increased by B. Experience
tells us that a decay distance B = 1m is plausible.

– A: strength of the interaction. As a minimal condition, the interaction should prevent
passing-throughs of pedestrians (they are no ghosts!) requiring v2/2 < Φint(0) =
AB (cf problem Part (c)). Here, we have AB = 2m2/s2 preventing such collisions
for speeds below vc =

√
2AB = 2m/s = 7.2 km/h. This should also be enough

when considering that the minimum distance is about 0.5m and also including the
additional driving force of the desired speed (provided τ is not too small). Another
plausibility test is the maximum deceleration given by A as well. This also makes a
value A = 2m/s2 plausible.

– ∆t: anticipation time horizon for the trajectory planning. As in car driving, it should
be comparable to the reaction time and the time gap when following each other:
OK

– λ: anisotropy: The repulsive force is weakened by a factor λ when the target is not
straight ahead but behind and partially weakened for other directions. Should be
≪ 1, even zero is plausible: OK.

– τ : free-flow adaptation time. Determines, together with ~v0, the free-flow dynamics.
Essentially measures the time a pedestrian needs to reach his/her desired walking
speed from standstill which is plausible. Also gives the maximum free acceleration
v0/τ = 0.75m/s2 which is plausible as well. Finally, the maximum free-flow accelera-
tion is lower than the maximum interaction acceleration of the order of A = 2m/s2

(b) Calculating the interaction potential essentially entails calculating the semi-axis b(~x). For
straight-ahead approaches to a standing obstacle as in Situation I assuming ~x = (−r, 0),
~v = (v, 0), r > 0, and r > v∆t, the equation for b simplifies as follows:

b(r|v) = 1

2

√

(

|~x|+ |~x+∆~d|
)2

− |∆~d|2

=
1

2

√

(r + |~x+ ~v∆t|)2 − (v∆t)2

=
1

2

√

(r + (r − v∆t))2 − (v∆t)2

=
1

2

√

(2r − v∆t)2 − (v∆t)2

=
1

2

√

4r2 − 4rv∆t =
√

r2 − rv∆t

Inserting the values of Situation 1 gives with ∆t = 1 s the semi-minor axis b = 2.12m
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and
Φint = AB exp(−b/B) = 0.240m2/s2

(c) For a pedestrian moving along the x axis at position x = −r < 0 and a standing target
pedestrian at the origin, we have w(φ) = 1, so

dv

dt
=

v0 − v

τ
− dΦint

dx

=
v0 − v

τ
+Ae−b/B db

dx

=
v0 − v

τ
−Ae−b/B db

dr

=
v0 − v

τ
−Ae−b/B r − v∆t/2

b

For Situation I, we have (v0 − v)/τ = 0 (the pedestrian moves at its desired velocity),
b = 2.12m from above, r = 3m and v∆t/2 = 0.75m, so

dv

dt
= −0.254m/s2

(d) (i) If the potential depends only on ~x and not on the speed (of the subject pedestrian)
or explicitly on time (if the target pedestrian moves), the SFM acceleration for
τ → ∞ and without the directionality w(φ) (e.g., for frontal approaches) reads

d~v

dt
= −∇Φint(~x)

or for Situation I:
dv

dt
= −dΦint(x)

dx

Multiplying both sides with v = dx
dt gives

v
dv

dt
= −dΦint(x)

dx

dx

dt
d

dt

(

v2

2

)

= − d

dt

(

Φint(x(t))
)

∫

dt

v2

2
= −Φint(x) + const.

or

E =
v2

2
+ Φint(x) = const.

(ii) We calculate the constant energy from the initial conditions:

E = Φint +
1

2
v2 = 1.365m2/s2 < AB = 2m2/s2

This means, Pedestrian 1 stops before reaching the center of Pedestrian 2 4

4with anticipation, there is even a larger marging but it is not possible to calculate it analytically.
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(iii) Without anticipation, we have ∆~d = ~0 and the equation for the semi-minor axis
becomes (for a target pedestrian at the origin)

b = |~x| = r

For the stopped pedestrian, v = 0 but its energy is still the same as in the beginning,
so we have

E = Φint(x) = ABe−x/B

ln

(

E

AB

)

= − x

B
,

giving the stopping distance

x = xs = −B ln

(

E

AB

)

= 0.382m.

(e) The target pedestrian is standing at the origin (like an unpenetrable obstacle). Since
the subject pedestrian already has a negative y-component, he/she will surely swerve
further to the right to avoid the target, i.e., the y-component of the acceleration should
be negative.

Since the pedestrian walks presently at his/her desired speed, there is no free acceleration
term. Further, we have φ = −20π/180 = −0.349 and the directional strength dependence
w(φ) = 0.972 > 0 does not change the direction vector which is given solely by the sum
of the unit vectors. Since ~e~x does not have an y component, the y component of the
acceleration is proportional to the y-component of ~e~x+∆~d. We have

~e~x+∆~d =
~x+ (~v − ~v2)∆t

|~x+ (~v − ~v2)∆t| = (−0.95,−0.306)

confirming the expectation. In fact, we have a negative y component if vy − v2y < 0

Calculating the full interaction acceleration (with w = 1) gives

−∇Φint(~x) = (−0.226,−0.035)m/s2

(f) We expect now the subject pedestrian to swerve to the left because this pedestrian
anticipates that, after the anticipation time, the target pedestrian will be at his/her
right side, so we expect a positive y acceleration. Such an anticipation is also contained
in the SFM with the presented elliptical specification II. A calculation as in (e) gives,
indeed,

−∇Φint(~x) = (−0.227, 0.034)m/s2

confirming the expectation
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Solution to Problem 11.3: Single-file fundamental diagram

(a) The homogeneous steady-state condition implies that the accelerations of all peddestrians
i are zero and all pedestrians have the same speed vi = v and distance ∆xi = d from each
other,

xi−1 − xi = ∆xi = d, vi = V,
dvi
dt

= 0.

For these conditions, the shielded SFM becomes

0 =
dvi
dt

=
v0 − V

τ
+

i−1
∑

j=−∞

fij +

∞
∑

j′=i+1

fij′

=
v0 − V

τ
− 1

∞
∑

l=1

Ae−l∆x/B + λ

∞
∑

l′=1

Ae−l′∆x/B

=
v0 − V

τ
−Ae−∆x/B + λAe−∆x/B

=
v0 − V

τ
−A(1− λ)e−d/B ,

so we obtain the fundamental speed-distance relation

V (d) = v0 − τA(1− λ) e−d/B (1)

(b) With the standing-queue condition V (d0) = 0, we obtain

0 = v0 − τA(1− λ) e−d0/B ,

so
A =

v0
τ(1− λ)

ed0/B

(c) With this condition, the steady-state condition (1) becomes

V (d) = v0

[

1− e−(d−d0)/B
]

and the fundamental diagram (homogeneous steady-state flow-density relation)

Q(ρ1d) = ρ1dV (1/ρ1d)
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