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Solution to Problem 10.1: Why the grass is always greener on the other side

We assume two lanes with staggered regions of highly congested traffic (ρ1, V1) and less conge-
sted traffic (ρ2 < ρ1, V2 > V1) of the same length: Whenever there is highly congested traffic
on lane 1, congestion is less on lane 2, and vice versa (cf. the figure in the problem statement).
Since traffic in both regions is (more or less) congested and the fundamental diagram is trian-
gular by assumption, the transitions from region 1 and 2 and from 2 to 1 remain sharp and
propagate according to the shock-wave formula (??) at a constant velocity

c =
Q2 −Q1

ρ2 − ρ1
= −

l

T
= −5m/s.

The fraction of time in which drivers are stuck in the highly congested regions is obviously
equal to the fraction of time spent in regions of type 1. Denoting by τi the time intervals τi to
pass one region i = 1 or 2, we express this fraction by

pslower = p1 =
τ1

τ1 + τ2
.

When evaluating τi, it is crucial to realize that the regions propagate in the opposite direction
to the vehicles, so the relative velocity Vi + |c| is relevant. Assuming equal lengths L for both
regions, the passage times are τi = L/(Vi + |c|), so

p1 =

L
V1+|c|

L
V1+|c| +

L
V2+|c|

=
V2 + |c|

V2 + V1 + 2|c|
.

For example, if V1 = 0 and V2 = 10m/s, the fraction is

p1 =
10 + 5

10 + 10
=

3

4
,

i.e., drivers are stuck in the slower lane 75% of the time – regardless which lane they choose
or of whether they change lanes or not.

Alternatively, one picks out a vehicle at random. Since the less and highly congested regions
have the same length, the fraction of vehicles in the highly congested region, i.e., the probability
of picking one from this region, is given by

p1 =
ρ1

ρ1 + ρ2
=

200

200 + 200/3
=

3

4
.
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Solution to Problem 10.2: Stop or cruise? 1. yellow (amber) time intervals

We distinguish two cases: (i) Drivers can pass the traffic light at unchanged speed in the yellow
phase, i.e.,

s < s1 = vτy.

(ii) When cruising, drivers would pass the traffic light in the red phase, so stopping is man-
datory. In this case, drivers need a reaction time Tr to perceive the signal, make a decision,
and stepping on the braking pedal. Afterwards, we assume that they brake at a constant
deceleration b so as to stop just at the stopping line. This results in the stopping distance

s = vTr +
v2

2b
. (1)

Obviously, the worst case for the initial distance s to the stopping line at switching time green-
yellow is the threshold s = s1 between (i) and (ii), i.e., cruising is just no more legal. Inserting
s = s1 into Eq. (1) and solving for b gives

b =
v

2(τy − Tr)
= 3.47m/s2.

This is a significant, though not critical, deceleration. It is slightly below the deceleration
3.86m/s2 implied by the braking distance rule

”
speedometer reading in km/h squared divided

by 100“ (cf. Tutorial 8) but above typical comfortable decelerations of the order of 2m/s2. We
conclude that the legal minimum duration of yellow phases is consistent with the driver and
vehicle capabilities.

Solution to Problem 10.3: Stop or cruise? 2. decisions implied by car-following
models

(a) This MOBIL decision criterion means that one brakes to a stop whenever the braking
deceleration at decision time is smaller than the safe braking deceleration. Otherwise one
cruises through the intersection. In sensible models as the IDM, one tries to bring the
situation under control whenever the required braking deceleration is above the comfortable
deceleration b. Assuming bsafe > b this means that the initial deceleration is the highest,
so a safe deceleration to a stop is guaranteed.

(b) If the decision is “stop”, then one assumes a virtual standing vehicle of length zero at the
stopping line, i.e., vl = 0 or ∆v = v. Evaluating the decision criterion for the IDM gives

dv

dt
= −a

(

s∗(v, vl)

s

)2

> −bsafe

a

(

s∗(v, vl)

s

)2

< bsafe

a
(s∗(v, vl))

2

bsafe
< s2
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This means, the general critical gap is given by

s > ssafe(v) = s∗(v, 0)

√

a

bsafe
. (2)

(c) For a = b = bsafe, we obtain for v = v0

s > ssafe(v) = s∗(v, 0) = s0 + v0T +
v20
2b

,

If the time gap parameter T also gives the reaction time, this is precisely the minimum
gap s0 plus the stopping distance with its components reaction distance vT and braking
distance v2/(2b)!

Specific values:

� v0 = 50km/h : ssafe = s∗(v0, 0) = 62m, ∆tsafe = ssafe/v0 = 4.47 s

� v0 = 70km/h : ssafe = s∗(v0, 0) = 114m, ∆tsafe = ssafe/v0 = 5.86 s

(d) The above critical distances and associated critical time intervals till passing are too great.
Considering that the minimum amber times for 50 km/h and 70 km/h are given by 3 s and
4 s, respectively, this strategy may lead to crossing red traffic lights. Of course, the reason
is that the legislation imposes on the driver a safe deceleration bsafe that is somewhat
greater than the comfortable deceleration b. In this case, we obtain from the above general
formula (2) for bsafe = 4m/s2,

� v0 = 50km/h : ssafe = 44m, ∆tsafe = ssafe/v0 = 3.16 s

� v0 = 70km/h : ssafe = s∗(v0, 0) = 81m, ∆tsafe = ssafe/v0 = 4.14 s

There is still a minimal chance of passing a red traffic light if the yellow/amber times
are at their minimum allowed values of 3 s and 4 s, respectively. This is due to an IDM
imperfection: At the beginning of a stopping maneuver, the IDM tends to “brake” a little
too hard

(e) For the OVM, we have the critical gap

v̇OVM =
vopt(s)− v

τ
< −bsafe

Because only the interacting range s < v0T is relevant, this leads to

v̇OVM =
s/T − v

τ
> −bsafe, ⇒ s > ssafe = T (v − τbsafe)

or s > ssafe = T (v − τbsafe) For v = v0 = 72km/h = 20m/s, τ = T/2 = 0.5 s, and bsafe =
4m/s2, this results in ssafe = 9.0m: This is much too low: For example, one would brake
if s = 10m. However, at this gap, the kinematic braking deceleration to avoid crossing the
stopping line (and stopping mid-intersection instead) is given by bkin = v2/(2s) = 20m/s2.
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Solution to Problem 10.4: Reconstruction of the traffic situation around an
accident

(a) In the space-time diagram below, thin dashed green lines mark confirmed free traffic while
all other information is visualized using thicker lines and different colors. The respective
information is denoted in the key. The signal

”
zero flow“ means

”
I do not know; either

empty road or stopped traffic“.
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(b) The information of the first floating car (FC1) tells us the speed in free traffic, Vfree =
10km/5minutes = 120 km/h. From the second floating car (FC2) we know that an ups-
tream jam front passes x = 5km at 4:19 pm.

The stationary detectors D1 at x = 4km and D2 at 8 km both report zero flows in a
certain time interval but this does not tell apart whether the road is maximally congested
or empty. However, we additionally know by the two mobile phone calls that the road is
fully congested at 5 km while it is empty at 7 km. The congestion at 5 km is also consistent
with the trajectory of the second floating car. Since downstream jam fronts (transition
jam → free traffic) are either stationary or propagate upstream at velocity c ≈ −15 km/h
but never downstream (apart from the special case of a moving bottleneck), we know that
the missing vehicle counts of D1 are the consequence of standing traffic while that of D2
reflect an empty road (at least when ignoring the possibility that there might be another
obstruction more downstream causing a second jam).

With this information, we can estimate the motion of the upstream jam front. Assuming
a constant propagation velocity cup, we determine this velocity from the spatiotemporal
points where detector D1 and the second floating car encounter congestion, respectively:

cup =
−1 km

6min
= −10 km/h .

www.mtreiber.de/Vkmod Traffic Simulation, Summer semester Solutions to Tutorial 10, page 4



“Friedrich List” Faculty of Transport and Traffic Sciences Chair of Econometrics and Statistics, esp. in the Transport Sector

The motion of this front is another strong evidence that D2 does not measure a transition
from free to fully congested traffic but from free traffic to no traffic at all at x = 8km and
t = 4:14 pm: Otherwise, the propagation velocity cup would be −4 km/5min = −48 km/h
in this region which is not possible even if we do not require cup to be constant: The largest
possible negative velocity cup, realized under conditions of maximum inflow against a full
road block, is only insignificantly larger in magnitude than |cdown| ≈ 15 km/h.

Now we have enough information to determine location and time of the initial road block
(accident). Intersecting the line

xup(t) = 4km + cupt− 25min) = 4km−
t− 25min

6
km/min

characterizing the upstream front with the trajectory xlast(t) of the last vehicle that made
it past the accident location,

xlast(t) = 8km + v0(t− 14min) = 8km + (t− 14min) 2 km/min

yields location and time of the road block:

xcrash = 6km, tcrash = 4:13 pm .

(c) After the accident site is cleared, the initially stationary downstream jam front (fixed
at the accident site) starts moving at the characteristic velocity cdown = −15 km/h =
−1 km/4min. Since the detector at x = 4km (D1) detects non-zero traffic flow from
4:58 pm onwards, the front is described by

xdown(t) = 4km + cdown(t− 58min).

Obviously, the accident location (xcrash = 6km) is cleared exactly at the time where the mo-
ving downstream jam front crosses the accident site (cf. the figure), i.e., at tclear =4:50 pm.
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