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Solution to Problem 7.1: Dissolving queues at a traffic light

When the traffic light turns green, the traffic flow passes the traffic light in the maximum-flow
state. For the triangular fundamental diagram, the speed at the maximum-flow state is equal
to the desired speed and the transition from the waiting queue (density ρmax) to the maximum-
flow state propagates backwards at a velocity c = −leff/T corresponding to the congested slope
of the fundamental diagram. In the microscopic picture, every follower starts a time interval T
later than its leader and instantaneously accelerates to V0. This suggests to interpret T as the
reaction time of each driver, so |c| is simply the distance between two queued vehicles divided
by the reaction time.

We emphasize, however, that the LWR model does not contain any reaction time. Moreover,
the above microscopic interpretation no longer holds for LWR models with other fundamental
diagrams. Therefore, another interpretation is more to the point. As above, the driver instanta-
neously starts from zero to V0 which follows directly from the sharp macroscopic shock fronts.
However, the drivers only start their

”
rocket-like“ acceleration when there is enough time head-

way at V0. Thus, |c| is the distance between two queued vehicles divided by the desired time
gap T in car-following mode. Similar considerations apply for concave fundamental diagrams
(such as the parabola-shaped of Problem ??). This allows following general conclusion:

The fact that not all drivers start simultaneously at traffic lights is not

caused by reaction times but by the higher space requirement of moving with

respect to standing vehicles: It simply takes some time for the already started

vehicles to make this space.

Solution to Problem 7.2: Total waiting time during one red phase of a traffic

light

The total waiting time in the queue is equal to the number n(t) of vehicles waiting at a given
time, integrated over the duration of the queue: Defining t = 0 as the begin of the red phase
and x = 0 as the position of the stopping line, this means

τtot =

τr+τdiss
∫

0

n(t) dt =

τr+τdiss
∫

0

xo(t)
∫

xu(t)

ρmax dx dt = ρmaxA,

i.e., the total waiting time is equal to the jam density times the area of the queue in space-time
(cf. the following diagram).
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The area of the congested area is equal to the sum of the area of the two right-angled triangles
with the legs (τr,−c12τr) and (τdiss,−c12τr), respectively:

τtot =
1

2
ρmax

(

−c12τ
2
r − c12τrτdiss

)

.

To obtain the second right-angled triangle DEF’, we have shifted the point F of the origi-
nal triangle DEF to F’ which does not change the enclosed area. Furthermore, we have the
geometrical relation (cf. the figure again)

c12τr = (c23 − c12)τdiss,

i.e., τdiss = c12τr/(c23 − c12). Inserting this into the expression for τtot finally gives

τtot =
1

2
ρmaxτ

2
r

c12c23
c12 − c23

with

c12 =
Qin

Qin/V0 − ρmax
, c23 = − 1

ρmaxT
.

The total waiting time ...

� increases with the square of the red time,

� is, for small demands, essentially proportional square of the demand Qin,

� diverges if the demand tends to Qmax (in reality, it diverges if the demand is greater than
Qmax multiplied with the percentage of the greentime during one cycle.)
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Solution to Problem 7.3: Two consecutive signalized intersections: green waves

(a) Capacity:

C = Qmax =
1

T
(

1 + leff
v0T

) = 0.5 s−1 = 1800 veh/h.

(b) Density of the queues:

ρqueue = ρmax =
1

leff
= 133 veh/km

Propagation velocity of perturbations inside the queues:

ccong = − leff
T

= −5m/s = −18 km/h

This velocity is equal to the slope of the congested branch of the FD and therefore is also
valid for the downstream front queue→free (=tip of the FD).

(c) The assumption of a constant demand is only sensible if there are no traffic lights for
several kilometers upstream, i.e., for the first traffic light when entering a city. For traffic
lights further downstream, the strongly fluctuating inflow is controlled by the lights
further upstream.

To estimate the effective capacity over one cycle, we just multiply the free-flow capa-
city Qmax with the percentage time of the green phases (no yellow/amber phases are
mentioned; furthermore, the LWR vehicles accelerate instantaneously):

K = Qmax
70

110
= 1145 veh/h

This is sufficient for a demand Qin = 1029 veh/h

(d) We have following states (cf. the figure):

(i) Inflow: free traffic, Q1 = 1029 veh/h, ρ1 =
Q1

V0
= 19.0 veh/km

(ii) Queue: Q2 = 0, ρ2 = ρmax = 133.3 veh/km

(iii) Outflow from the queue after the light turns green: Q3 = Qmax = 1800 veh/h,
ρ3 =

Q3

V0
= 33.3 veh/km

(iv) Empty road downstream of a red traffic light: Q4 = 0, ρ4 = 0.
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From the shockwave formula, this gives following front propagation velocities (for the
notation cf. the figure):

c12 = c21 =
Q2 −Q1

ρ2 − ρ1
= −2.5m/s = −9 km/h,

c13 = c31 = c14 = c41 = c34 = c43 =
Q3 −Q1

ρ3 − ρ1
= 15m/s = 54 km/h,

c23 = c32 =
Q2 −Q3

ρ2 − ρ3
= ccong = −5m/s = −18 km/h,

For the drawing, we have:

– Inflow-queue: one negative vertical box edge per one horizontal edge,

– Outflow: Two negative vertical box edges per horizontal edge

– Empty road - outflow and vice versa: six positiv vertical edges per horizontal edge

(e) Sketch:
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Solution to Problem 7.4: Flow instability in Payne’s model and in the

Kerner-Konhäuser Model

For both models, (a) and (b): According to the problem setting, traffic flow is stable for
the Payne and Kerner-Konhäuser models if the stability condition

(

ρV ′

e (ρ)
)2 ≤ P ′(ρ).
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applies. For the triangular fundamental diagram as specified in the problem formulation, the
gradient of the speed-density relation reads

V ′

e(ρ) =

{

0 ρ ≤ ρC,
− 1

ρ2T
ρ > ρC,

with the density at capacity ρC = 1/(v0T + leff) = 20 vehicles/km. For free traffic (ρ < ρC),
there are no interactions in both models (V ′

e(ρ) = 0) and therefore we have unconditional
stability.

According to the above stability condition, congested traffic flow (ρ ≥ ρC) is stable if

1

(ρT )2
≤ P ′(ρ)

The derivative P ′(ρ) of the pressure term P (ρ) of the two models can be found by comparing
the model’s gradient term with the partial derivative of the respective model equation (put on

the right-hand side) with the expression −1
ρ
∂P (ρ(x))

∂x
= −1

ρ
P ′(ρ) ∂ρ

∂x
defining the pressure. For

Payne’s model, this gives

−1

ρ
P ′(ρ)

∂ρ

∂x
=

V ′

e(ρ)

2ρτ

∂ρ

∂x

P ′(ρ) =
−V ′

e(ρ)

2τ

and for the KK model simply
P ′(ρ) = θ0

(a) Inserting this into the stability condition gives for Payne’s model

1

(ρT )2
≤ P ′(ρ)

1

(ρT )2
≤ −V ′

e(ρ)

2τ

1

(ρT )2
≤ 1

2ρ2Tτ

1

T
≤ 1

2τ
τ ≤ T/2

In summary, Payne’s model is stable if either ρ < ρc (free) or, if congested, τ ≤ T/2

(b) For the KK model, we have

1

(ρT )2
≤ θ0 ⇒ ρ2 >

1

θ0T 2

So, the KK model is (flow) stable if either ρ < ρc (free) or, if congested, ρ > 1/(T
√
θ0)

or, (cf the figure)

(ρ < ρc) OR

(

ρ >
1

T
√
θ0

)

.
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Hence, if the stability limit should be at ρc4 = 50 /km, we have for T = 1.1 s (cf the
figure)

θ0 =
1

ρ2cT
2
= 331

m2

s2
.
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