
1

Two Fast Implementations of the Adaptive Smoothing Method
Used in Highway Traffic State Estimation

Thomas Schreiter, Hans van Lint, Martin Treiber and Serge Hoogendoorn

Abstract— Freeway traffic state estimation is crucial for
dynamic traffic management (DTM), Advanced Traveler In-
formation Systems (ATIS) and highway performance analyses.
Raw data collected by dual-loop detectors or GPS devices
provide information about flow and speed at points in space and
time. However, these observations are noisy and incomplete. The
Adaptive Smoothing Method (ASM) estimates the traffic state
between the observation points and reduces the noise inherent
to observations. Current implementations of the ASM apply
its model in a straight-forward manner, which leads to high
computation times. In this paper, two new implementations are
developed that drastically reduce the computation time while
preserving the estimation quality.

In the first implementation, the ASM is discretized to apply
the cross-correlation. This is based on matrix operations, which
are efficiently implemented and fast in execution. In the second
implementation, the ASM is reformulated to apply the Fast
Fourier Transform (FFT). The FFT, too, is based on fast matrix
operations. These two new implementations are sequential
programs, containing no loops. Experiments with a setup used
in practical applications and real data show computation times
of just a few seconds. These are computation time improvements
of two orders of magnitude. The rapid computation of the
traffic state makes the ASM with the proposed implementations
applicable for real-time applications.

I. INTRODUCTION

Dynamic Traffic Management (DTM) and Advanced Trav-
eler Information Systems (ATIS) require some form of the
current traffic state as input. An accurate estimate of the
current state of traffic is also the essential starting point of
traffic predictors, which in turn are used in DTM and ATIS
applications such as model-predictive control. Furthermore,
traffic authorities need to evaluate the historic performance
of their roads.

Usually, the traffic state cannot be directly measured
everywhere but needs to be estimated from incomplete, noisy
and local traffic data. Commonly, volumes or average vehicle
speeds are measured at certain locations on the highway,
for example by dual-loop detectors or GPS devices. To
estimate the total traffic state from these point measurements,
interpolation between sensors is necessary.

In the current state of practice, often simple (orthogonal)
interpolation methods are used to estimate traffic quantities
at locations and instants “between” observations. This is for

T. Schreiter, H. van Lint and S. Hoogendoorn are with the depart-
ment Transport & Planning, Faculty of Civil Engineering, Delft Univer-
sity of Technology, 2600 GA Delft, The Netherlands, Email:{t.schreiter,
j.w.c.vanlint, s.p.hoogendoorn}@tudelft.nl. M. Treiber is with the In-
stitute for Transport & Economics, Technische Universität Dresden,
Falkenbrunnen, Würzburger Str. 35, 01187 Dresden, Germany, Email:
{treiber,kesting}@vwi.tu-dresden.de.

example what happens in speed-based travel time estimation
methods [1]. These simple methods assume that the behavior
of traffic is always equal in all traffic conditions. In reality,
however, the direction in which information travels through
the network differs depending on traffic conditions: in free
flow, information travels downstream, but in congested con-
ditions, information travels upstream. Therefore, these simple
methods exhibit significant bias [2].

One way to take the information direction into account is
through the kinematic wave theory, or the LWR model [3],
[4]. Model-driven approaches like Fastlane [5] and Renais-
sance [6] fuse the traffic state predicted by the model with
the measurements taken by traffic sensors. Also higher-order
models are used to describe the traffic behavior in more
detail [7], [8]. A disadvantage of these approaches is that
they have to be calibrated with a huge number of parameters.

Another kind of traffic estimators are data-driven ap-
proaches, which do not predict the traffic state, but only take
the measurements into account. An important example of
this approach is the Adaptive Smoothing Method (ASM) [9].
There, the measurements are smoothed in the space-time
plane along the characteristic wave speed of the present
traffic regime. The advantage of the ASM is that it is
calibrated with only a few parameters.

There are several extensions of the ASM that expand
the sources of raw data from loop detectors to floating-
car data [10], [11]. The ASM is also part of a traffic
state estimation framework, which additionally estimates the
characteristic wave speeds [12] and reduces the speed bias
inherent to loop detector data [13].

Current implementations of the ASM compute the traffic
state of road stretches of a few kilometers length within
a few minutes (on current state-of-the-art laptops). The
computation time increases, however, if the traffic state of
a large road stretch, of a long time period or with a fine-
grained resolution has to be computed.

Therefore, in this paper, two fast implementations of the
Adaptive Smoothing Method are proposed. The computation
time to filter the traffic state is reduced, while the filter
quality is preserved. One of these implementation uses the
cross-correlation, which originates from signal processing.
The conventional ASM implementation is reformulated to
apply the cross-correlation, which significantly reduces the
computation time in Matlab. The other of these implemen-
tations is based on the Fast Fourier Transform (FFT), which
was also developed in signal theory.

This paper is structured as follows. The ASM and the
two proposed implementations are presented in Section II.

2

The implementations proposed are tested with data from
Dutch freeways (Section III). The results show improve-
ments of computation time up to two orders of magnitude
(Section IV). The proposed implementations can therefore
easily replace the conventional implementation in practical
applications (Section V).

II. METHODOLOGY

The focus of this paper lies in a faster implementation
of the ASM. Existing implementations compute the traffic
state within several minutes in realistic setups. However,
for recurring applications or in real-time environments, the
computation time becomes a crucial factor. Therefore, two
novel implementations are proposed. In this section, first the
Adaptive Smoothing Method is briefly described; then, the
new implementations are specified.

A. The Adaptive Smoothing Method

The Adaptive Smoothing Method was developed by
Treiber and Helbing [9]. Since then, it has been general-
ized [10], [11] and used in various applications [14], [15].

The ASM takes as input speed values vraw(x, t), observed
at locations x ∈ X raw at times t ∈ T raw. A second
spatio-temporal traffic variable is optional. Usually, the flow
observed at the same points as the speed map is used,
but also other macroscopic quantities such as traffic density
can be used. In the remainder of the paper, the symbol Z
refers to any macroscopic traffic quantity, whereas V denotes
specifically the speed.

The output of the ASM is a continuous, estimated spatio-
temporal variable zest. In order to solve the ASM numerically
however, the filtered map is discretized at locations Xest

and times T est. Usually, this underlying space-time grid is
chosen to be equidistant with resolution ∆xest and ∆test,
respectively.

The calculation of the estimated map is based on kinematic
wave theory. Depending on the underlying traffic regime,
the characteristics of traffic travel with a certain wave speed
over space and time. Traffic is to be assumed in one of
two regimes. Each of these regimes has one typical wave
speed, with which the characteristics travel. In free-flow, this
wave speed is around cf = 80 km/h, in congestion around
cc = −18 km/h. The exact values vary depending on the
conditions. However, these values lead to reasonably good
estimation results. To increase the estimation quality, these
parameters can also be estimated directly from the observed
data zraw by the Wave Speed Estimator [12].

The observed map zraw is nonlinearly transformed into a
smooth, estimated map zest, whose elements are a weighted
sum of smoothed elements of both traffic regimes:

zest(x, t) = w(x, t) · zc(x, t) + [1− w(x, t)] · zf(x, t) . (1)

The intermediate functions zc and zf represent the traffic
in congested and in free-flow conditions, respectively. The
weighting factor w depends on the underlying traffic regimes.

The congested function zc is defined by

zc(x, t) =
1

nc(x, t)

∑
xi

∑
tj

φc(xi − x, tj − t) · zraw(xi, tj)

(2)

with the normalization factor

nc(x, t) =
∑
xi

∑
tj

φc(xi − x, tj − t) , (3)

whereby the sums loop over the observations points xi ∈
X raw and tj ∈ T raw.

The smoothing kernel

φc(x, t) = exp

(
−|x|
σ
−
∣∣t− x

cc

∣∣
ζ

)
(4)

is an exponential function with the spatial parameter σ and
the temporal parameter ζ. The characteristic congested wave
speed cc influences the skew of the kernel.

The free-flow function zf is similarly defined to zc (2) with
a normalization factor nf, the free-flow smoothing kernel φf

and the free-flow wave speed cf.
The weighting factor w in (1) depends on the intermediate

speed functions vc and vf:

w(x, t) =
1

2

[
1 + tanh

(
Vcrit − v∗(x, t)

∆V

)]
(5)

with critical speed Vcrit, transition speed range ∆V and

v∗(x, t) = min
(
vc(x, t), vf(x, t)

)
. (6)

For details about the ASM refer to the original paper [9].
The result zest is defined in continuous space-time. For

numerical computations, the above equations are discretized,
however.

Conventional algorithms implement the double sum of
zc (2) in a double loop. In scientific simulation tools such
as Matlab, which are specialized in matrix operations, the
execution of for-loops is particularly slow.

The Complexity: The most complex function is the calcu-
lation of zc (2). The conventional implementation loops over
space and time, where the number of filter points in these
dimensions is X

∆xest and T
∆test , respectively, with X and T

denoting the length of the resulting rectangle in space and
time, respectively.

For practical reasons, not all observations are taken into
account, because the values of the kernel φc (4) approach
zero quickly. Therefore, only a certain space-time rectangle
around the filter point (x, t) is relevant for the computation.
Usually, this rectangle is chosen to be of length 2aσ in space
and 2aζ in time, for a kernel width factor a. A value of a = 5
provides good results for an exponential kernel.

The number of these relevant observation points therefore
depends on a and the average observation resolution ∆xraw

and ∆traw. To conclude, the complexity of the conventional
method is

ASM ∈ O
(

X

∆xest ·
T

∆test ·
a2

∆xraw ·∆traw

)
. (7)

3

(Since the focus of this paper is on the computation time
dependent on the number of input and output data points,
parameters that kept constant in this paper are omitted in the
complexity classes (7), e.g. σ and ζ.)

B. Solving the ASM by the Cross-correlation

The crucial part of the ASM is the computation of the
intermediate regime function zc (2) (and zf). This equation
can be solved in a different way, relying on matrix arith-
metics suitable for Matlab. For this purpose, the continuous
equations of the ASM are discretized and solved with the
two-dimensional cross-correlation �, which is a fast opera-
tion. The cross-correlation is defined as

(A�B)(m,n) =
∑
µ

∑
ν

A(µ, ν) ·B(m+ µ, n+ ν) , (8)

where A and B are matrices. This section presents the
algorithm of the Cross-correlation implementation.

The most important equation of the ASM is the calculation
of zc (2). By applying a shift of indices with ξi = xi − x
and τj = tj − t, the numerator of zc can be expressed by a
cross-correlation operation:∑

ξ

∑
τ

φc(ξ, τ) · zin(x+ ξ, t+ τ) = (φc � zin)(x, t) . (9)

This is a continuous function. To solve the ASM numerically,
a discretized version is used, where these functions are sam-
pled at equidistant points in space and time. For this purpose,
the observation data zraw are discretized at equidistant points
with the spatial resolution ∆xest and the temporal resolution
∆test to the matrix Z in. The congested matrix then reads

Zc
lk =

∑
i

∑
j

Φc
ij · Z in

l+i,k+j∑
i

∑
j

Φc
ij ·Ml+i,k+j

=

(
Φc � Z in

)
lk

(Φc �M)lk
, (10)

with a discretized smoothing kernel Φc and a binary observa-
tion indication matrix M . The division of the matrices in this
equation is elementwise. The denominator originates from
the normalization function nc (3), which is a weighted sum of
the kernel at all observation points. In the discretized version,
only elements of Φc that correspond to an observation
should be summed up. Therefore, the observation indication
matrix M is defined by

Mlk =

{
1 if observation at Z in

lk available
0 else

. (11)

The following algorithm explains the steps of the cross-
correlation in more detail.

1) The Algorithm:
a) Discretization of observed data: The observation

data maps in the equations of the ASM are discretized at
equidistant points with the spatial resolution ∆xest and the
temporal resolution ∆test. The observed quantity zraw(x, t)
is mapped to that discretized point in Z in which is closest to
(x, t). All remaining elements in Z in are set to zero.

Example 1 (Discretization of observed data map): Let
the following matrices be given by observations:

observed speeds V raw =

1 2 3
4 5 6
7 f 9

 , (12)

observation locations X raw =
[
0 1000 2900

]
, (13)

observation times T raw =
[
0 60 120

]
, (14)

where f indicates a missing observation. Let the output
resolution be ∆xest = 500 and ∆test = 30. Then, the
discretized variables read

Xest =
[
0 500 1000 . . . 3000

]
, (15)

T est =
[
0 30 60 90 120

]
, (16)

V in =



1 0 2 0 3
0 0 0 0 0
4 0 5 0 6
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
7 0 0 0 9


, M =



1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1


.

(17)

Note that a discretization error occurs in this example: The
observations at location 2900 are relocated to the nearest
sample point at 3000. In practice, these discretization errors
are negligible, because the output resolution is usually chosen
high, for example 100 m. (Note that with that resolution no
discretization error would occur in this Example.)

b) Discretization of the kernel: Next, the kernel ma-
trix φc (4) is discretized with the same resolution ∆xest and
∆test, where the maximum is in the center of the matrix:

XΦ =
[
−a · σ, . . . , −∆xest, 0, ∆xest, . . . , a · σ

]
(18)

The temporal points TΦ are defined in a similar way. The
congestion kernel matrix is defined as

Φc
ij = exp

−|XΦ
i |
σ
−

∣∣∣TΦ
j −

XΦ
i

cc

∣∣∣
ζ

 (19)

The free flow kernel matrix Φf is defined similarly.
c) Apply smoothing kernels by Cross-correlation: Ap-

ply the cross-correlation � (10).
d) Weighting and summing: The result Zest is computed

by weighting (5) and summing (1) the intermediate regime
matrices (10):

W =
1

2
·
(

1 + tanh

[
Vc −min{V c, V f}

∆V

])
, (20)

Zest = W •Zc + (1−W) •Z f , (21)

with elementwise minimum, elementwise tanh and ele-
mentwise multiplication •. Zest is the output of the cross-
correlation implementation of the ASM.

4

2) The Complexity: The complexity is significantly de-
fined by cross-correlation operation (10). In the following,
the runtime complexity of numerator Φc � Z in is analyzed;
similar results hold for the denominator.

The complexity of the cross-correlation of two matrices
A ∈ RNA×MA and B ∈ RNB×MB is [16]

A�B ∈ O (NAMA ·NBMB) . (22)

The size of the input matrix Z in is linearly dependent on the
road stretch length X and the filter grid resolution ∆xest:

|Z in| ∈ O
(
X · 1

∆xest · T ·
1

∆test

)
. (23)

The size of the smoothing kernel matrix Φc is linearly
dependent on the the kernel width factor a and the resolution
∆xest:

|Φc| ∈ O
(
a · 1

∆xest · a ·
1

∆test

)
. (24)

The cross-correlation operation is therefore the product (22)
of both complexities (23) and (24):

Φc � Z in ∈ O
(
a2 ·X · T · 1

(∆xest)2 · (∆test)2

)
. (25)

The remaining operations in the cross-correlation implemen-
tation are multiplications, additions and other elementwise
operations, which are less complex than the cross-correlation.
Since cross-correlation implementation is a sequential al-
gorithm, its complexity equals the complexity of the most
complex operation (25).

The algorithm is linearly complex in the road stretch
length X , which makes it easily scalable in practical ap-
plications. The quadratic complexity in the resolution ∆xest

might be problematic, because a high resolution is needed to
minimize discretization errors caused by the equidistant input
grid of Z in. The kernel width factor a is usually fixed, as de-
scribed above. The argumentation in the temporal dimension
is similar because of the symmetry of the algorithm.

The complexity of this cross-correlation implementa-
tion (25) is nearly equal to the one of the conventional
implementation (7). The only difference is an exchange of
the variables of the raw data resolution with variables of the
filter data resolution. However, although there seems to be
no improvement of the complexity class, there is a speedup
in practical runtime, as it is presented below in Section IV.

C. Solving the ASM with the Fast Fourier Transform

A fast implementation of the cross-correlation already
exists. However, an even faster computation is possible with
the Fast Fourier Transform (FFT). The FFT implementation
of the ASM and the computation complexity are presented
in this subsection.

The FFT and the cross-correlation are both related to the
convolution ∗, which is defined as

(A ∗B)mn =
∑
µ

∑
ν

Aµν ·Bm−µ,n−ν (26)

of two matrices A and B. In the special case that one of the
matrices is symmetric, i.e.

Amn = AM−m+1,N−n+1 , (27)

the cross-correlation � equals the convolution ∗. In all cross-
correlation operations of Section II-B, the kernel matrices Φc

or Φf are involved. These are indeed symmetric. Therefore,
all cross-correlation operations of the ASM can be replaced
by convolution operations.

The convolution law

A ∗B = F−1 (F(A) •F(B)) (28)

connects the convolution ∗ and the Discrete Fourier Trans-
form F , where • denotes the elementwise multiplication of
two (complex) matrices. The Discrete Fourier Transform

(F(A))mn =
N∑
ν=1

(
e−

2πi·ν
N ·

M∑
µ=1

e−
2πi·µ
M Aµν

)
(29)

converts a two-dimensional discrete signal from its space-
time domain into the frequency domain. This operation is
inverted by the Inverse Discrete Fourier Transform (IDFT)

(F−1(A))mn =
1

NM

N∑
ν=1

(
e

2πi·ν
N

M∑
µ=1

e
2πi·µ
M Aµν

)
. (30)

The convolution of two matrices can therefore be computed
by converting these matrices into the frequency domain
by the DFT, multiplying their results elementwise, and
transforming this product back into the space-time domain
by the IDFT. The Fast Fourier Transform (FFT) is a fast
implementation of the DFT, provided that the input matrices
are of the same size and that their number of elements in
each dimension is a power of two. The efficiency of the
FFT is widely used in other scientific field, for example in
mathematics to speed up polynomial multiplications [16], in
the digital image format JPEG [17] (instead of the FFT itself,
the slightly different Discrete Cosine Transform (DCT) is
used), but also in traffic engineering to efficiently determine
the reliability of travel times [18].

1) The Algorithm: The computation of the ASM with
the FFT is based in the Cross-correlation implementation of
Section II-B. Every cross-correlation operation is replaced
by the convolution law (28).

To make the matrices of same size and their length in
each direction a power of two, they are padded with zeros.
Furthermore, the size of the zero-padding area has to be
sufficiently large to avoid overlapping: the data map has to
be zero-padded in each dimension with at least the size (18)
of the original kernel function (19). After the IFFT operation,
the zeros padded are removed to restore the original size of
matrices. This zero-padding procedure ensures that the FFT
implementation leads to the exact same results as the cross-
correlation implementation.

The remaining operations of the FFT implementation are
equal to the Cross-correlation implementation.

5

2) The Complexity: The complexity of the FFT imple-
mentation differs from the Cross-correlation implementation
only in the computation of the actual cross-correlation terms.

Let A ∈ RN×M and B ∈ RN×M be matrices of the same
size. Then, the complexity of the FFT (29)

F(A) ∈ O (NM logNM) (31)

is less than quadratic in the number of elements [16]. The
IFFT (30) is in the same complexity class, due to the similar
definition. The elementwise multiplication in (28) is linear
in the number of elements. Concluding, the cross-correlation
can be solved with the FFT

A�FFT B ∈ O (NM logNM) (32)

in less than quadratic time.
Note that the size of the kernel Φc must be the same as

of the data map Z in. The computation complexity of this
equation is therefore

Φc �FFT Z
in ∈ O

(
XT

∆xest∆test log
XT

∆xest∆test

)
. (33)

The comparison of the complexity of the FFT implemen-
tation (33) with the Cross-correlation implementation (25)
shows that the FFT implementation is less complex in the
resolution; i.e., the higher the resolution, the faster the
FFT implementation runs compared to the Cross-correlation
implementation. (In fact, the log part in (33) is not noticeable
in practice; the quadratic complexity of the resulution is
therefore reduced to nearly linear.) In contrast, the FFT
method is more complex in the road length X and the
measurement time T , favoring the Cross-correlation imple-
mentation for very large data sets.

The complexity is independent in the (average) resolution
of the observation points ∆traw and ∆xraw. This allows for
the combining of loop detector data with arbitrarily many
floating car data (FCD) without the losing runtime.

III. EXPERIMENTAL SETUP

To test the quality and runtime of the proposed implemen-
tations of the ASM against the conventional one, simulations
are performed. In order to get useful runtime observations,
all implementations are executed with the same parameter
settings and run on an idle state-of-the-art laptop.

Three parameters are varied: the road length X , the
measurement time T , and the resolution ∆xest. For every
combination, simulation runs of data over 10 days are
performed. The parameter settings are listed in Table I.

Raw data were gathered from dual-loop detectors from
the Dutch A15 East between Kilometers 30 and 60 between
06.00 and 16.00 from October 1 to October 10, 2009. These
observed speed and flow aggregated over 1 min at every
500 m on average.

The runtime is averaged arithmetically over these 10
observation days. The quality of the filter result is measured
by the Root Mean Squared Error (RMSE) and the Mean
Absolute Percentage Error (MAPE) of the speed and flow
maps of the Cross-correlation and the FFT implementation
against the conventional ASM.

Parameter Value(s) Description
X {5, 10, 20, 30} km road section length
T {2, 4, 6, 8, 10} h measurement time length
∆xest {10, 25, 50, 100} m spatial resolution of results
∆test 30 s temporal resolution of result
cc −18 km/h congested wave speed
cf 80 km/h free-flow wave speed
∆V 10 km/h length of transition region
Vcrit 70 km/h critical speed
σ 500 m spatial kernel length
ζ 60 s temporal kernel length
a 5 size of kernel matrix

TABLE I
SIMULATION PARAMETER SETTINGS

(a) Raw data

(b) Filtered data (by FFT implementation)

Fig. 1. Input and output speed data of the ASM

IV. RESULTS AND DISCUSSION

An example of input and output data of the Adaptive
Smoothing Method is shown in Figure 1. The induction loops
of the A15 East near Rotterdam, The Netherlands, collected
speed data over a length of X = 30 km and a measurement
time of T = 10 h. Both traffic regimes, free flow (green)
and congestion (yellow and red), are present. Note that some
detectors do not provide data, leaving holes in the data map.
The ASM smooths these observations, which results in a
speed map. In this figure, the FFT implementation was used.

Figure 2 shows the relationship between computation time
and the number of filter grid data points. Huge differences

6

0 1 2 3 4 ×1060

100

200

Number of output data points

C
om

pu
ta

tio
n

Ti
m

e
in

se
c

Fig. 2. Computation time against the number of filter points of the three im-
plementations: conventional (red circles), proposed Cross-correlation (blue
stars), proposed FFT (black diamonds)

0 5 10
0

20

40

60

Measurement Time T in h

C
om

pu
ta

tio
n

Ti
m

e
in

se
c

(a) ∆xest = 100, X = 30

0 20 40
0

10

20

30

Road Length X in km

C
om

pu
ta

tio
n

Ti
m

e
in

se
c

(b) ∆xest = 100, T = 10

0 50 100
0

100

200

300

Filter Resolution ∆xest in m

C
om

pu
ta

tio
n

Ti
m

e
in

se
c

conventional

cross-correlation

FFT

(c) X = 30, T = 10

Fig. 3. Computation time against the varied variables (c.f. Table I)

in computation time between the three implementations are
apparent. The computation time of the conventional method
increases sharply up to several minutes for data sets of
practical size, whereas the Cross-correlation and especially
the FFT run much faster. (In the case of the Cross-correlation,
two lines seem to emerge. Its complexity is not solely de-
pendent on the number of output data points; it is differently
complex in the resolution ∆xest and in the road length X ,
as is shown in Section II-B.2).

Figure 3 shows the computation times in more detail.
In each subplot, the computation time is plotted against
one of the three variables varied from Table I, whereas the
remaining two are fixed. (Note that the scale differs between
the subplots.) In the largest data test with a road length of
X = 30 km, a measurement time T = 10 h and fine-grained
resolution of ∆xest = 10 m, the computation time difference
is obvious (Figure 3(c)). The conventional implementation
takes almost five minutes, whereas the Cross-correlation
computes the result in less than two minutes. The FFT,
however, is performing even faster, with a computation time

(a) ∆xest = 10 m
2 h 4 h 6 h 8 h 10 h

5 km 43.5 35.5 62.4 58.4 43.4
10 km 59.4 43.5 72.7 69.5 53.5
20 km 53.9 42.4 59.1 56.3 40.1
30 km 69.2 53.1 87.9 85.6 57.3

(b) ∆xest = 25 m
2 h 4 h 6 h 8 h 10 h

5 km 43.4 32.2 43.9 40.3 28.8
10 km 46.7 36.7 47.7 43.3 33.3
20 km 64.3 48.0 76.5 73.5 58.4
30 km 62.5 48.2 75.5 72.0 59.4

(c) ∆xest = 50 m
2 h 4 h 6 h 8 h 10 h

5 km 47.2 33.0 43.6 39.8 28.3
10 km 71.6 48.7 68.9 61.9 42.4
20 km 58.1 44.4 57.8 53.3 39.6
30 km 87.6 60.3 106.0 97.9 73.4

(d) ∆xest = 100 m
2 h 4 h 6 h 8 h 10 h

5 km 48.8 35.0 44.4 39.8 26.7
10 km 60.3 41.9 56.0 50.5 36.0
20 km 86.6 56.8 81.5 72.5 49.8
30 km 88.2 59.4 84.0 75.0 52.2

TABLE II
SPEEDUP FACTOR OF THE FFT IMPLEMENTATION PROPOSED AGAINST

THE CONVENTIONAL IMPLEMENTATION, AVERAGED OVER ALL 10 DAYS

Speed Flow
MAPE Cross-correlation 0.097 % 0.301 %
MAPE FFT 0.097 % 0.301 %
RMSE Cross-correlation 0.130 km/h 9.198 veh/h
RMSE FFT 0.130 km/h 9.198 veh/h

TABLE III
ERROR MEASUREMENTS OF THE IMPLEMENTATIONS PROPOSED

AGAINST THE CONVENTIONAL ASM IMPLEMENTATION

of less than ten seconds.
Table II lists the speedup of the FFT implementation

against the conventional ASM for all varying variables,
averaged over the ten days. This speedup factor is at least one
order of magnitude. The highest speedup gained, however,
was more than a factor of 100. In the Cross-correlation
implementation, speedup factors between 2.7 and 25 were
observed.

In Table III, the errors between the two implementations
proposed and the conventional implementation were calcu-
lated. The MAPEs of the speed and the flow maps for both
implementations is significantly less than half a percent.
The RMSE of the flow map is around 10 veh/h, and of the
speed map at less than 0.2 km/h. Further, both implementations
proposed have the same error.

The filter of the two new presented implementations is
therefore extremely close to the conventional implementa-
tion, leaving only very small errors. These small errors are

7

induced by the discretization, which is necessary to apply
the matrix applications. Other than that, the quality of the
proposed implementations is equal to the conventional one.

V. CONCLUSION

This paper investigated alternative implementations of the
Adaptive Smoothing Method (ASM) [9]. The ASM is a
data-driven traffic state estimator, which filters macroscopic
traffic observations like speed and flow by kinematic wave
theory. The conventional implementation was compared with
a new implementation based on the two-dimensional cross-
correlation, and a new implementation based on the Fast
Fourier Transform (FFT).

In these two implementations, the observations are not
treated as single variables, but are gathered in a matrix
representing a speed or a flow map. The cross-correlation
operation and the FFT are applied to these matrices to
solve the ASM. Very fast algorithms of these operations are
available, which were incorporated into the ASM implemen-
tations proposed.

Experiments based on real data with realistic data sizes
show a vast speedup of the computation. The gain in
computation time reaches from a factor of twenty in the
Cross-correlation up to factor of one hundred in the FFT
implementation. The filter quality is nearly preserved with
respect to the conventional implementation of the ASM,
introducing only negligible discretization errors.

In addition, the proposed implementations do not contain
any loops, which makes them easier to maintain and easier
to port than the conventional implementation. This lack of
loops is indeed a reason why the simulations performed in
Matlab were so fast.

The fast computation time of a few seconds on a state-
of-the-art laptop make the proposed implementations of the
ASM usable for real-time applications which are based on
the current traffic state. These include traffic state predictors,
which in turn are fundamental tools for Dynamic Traffic
Management and Advanced Traveler Information Systems.

ACKNOWLEDGMENT

This research work is sponsored under Research Grant
“The MultiModal Port Traffic Centre” by the Port of Rot-
terdam Authority, Rijkswaterstaat Zuid-Holland and De Ver-
keersonderneming Rotterdam.

REFERENCES

[1] J. van Lint and N. van der Zijpp, “Improving a Travel-Time Estimation
Algorithm by Using Dual Loop Detectors,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 1855, pp.
41–48, 2003.

[2] C. Van Hinsbergen, F. Zuurbier, J. Van Lint, and H. Van Zuylen,
“Using an LWR Model with a Cell Based Extended Kalman Filter
to Estimate Travel Times,” in Third International Symposium of
Transport Simulation, no. 65, Surfers Paradise, QLD, Australia, 2008.

[3] M. Lighthill and G. Whitham, “On Kinematic Waves. II. A Theory
of Traffic Flow on Long Crowded Roads,” Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences
(1934-1990), vol. 229, no. 1178, pp. 317–345, 1955.

[4] P. Richards, “Shock Waves on the Highway,” Operations research,
vol. 4, no. 1, pp. 42–51, 1956.

[5] J. Van Lint, S. Hoogendoorn, and M. Schreuder, “Fastlane: New
Multiclass First-Order Traffic Flow Model,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 2088, no. -
1, pp. 177–187, 2008.

[6] Y. Wang, M. Papageorgiou, and A. Messmer, “RENAISSANCE–A
Unified Macroscopic Model-Based Aapproach to Real-Time Free-
way Network Traffic Surveillance,” Transportation Research Part C,
vol. 14, no. 3, pp. 190–212, 2006.

[7] H. Payne, “Models of Freeway Traffic and Control,” Mathematical
Models of Public Systems, vol. 1, no. 1, pp. 51–61, 1971.

[8] S. Hoogendoorn and P. Bovy, “State-of-the-art of Vehicular Traffic
Flow Modelling,” Proceedings of the Institution of Mechanical Engi-
neers, Part I: Journal of Systems and Control Engineering, vol. 215,
pp. 283–303, 2001.

[9] M. Treiber and D. Helbing, “Reconstructing the Spatio-Temporal
Traffic Dynamics from Stationary Detector Data,” Cooper@tive
Tr@nsport@tion Dyn@mics, vol. 1, no. 3, pp. 3.1–3.21, 2002.

[10] J. Van Lint and S. P. Hoogendoorn, “A Robust and Efficient Method
for Fusing Heterogeneous Data from Traffic Sensors on Freeways,”
Computer-Aided Civil and Infrastructure Engineering, vol. 24, pp. 1–
17, nov 2009.

[11] M. Treiber, A. Kesting, and R. E. Wilson, “Reconstructing the traffic
state by fusion of heterogenous data,” accepted for publication in
Computer-Aided Civil and Infrastructure Engineering, vol. preprint
physics/0900.4467, 2010.

[12] T. Schreiter, H. van Lint, Y. Yuan, and S. Hoogendoorn, “Propagation
Wave Speed Estimation of Freeway Traffic with Image Processing
Tools,” in in proceeding of the Transportation Research Board, 89th
Annual Meeting, Washington, D.C., DVD, 2010.

[13] Y. Yuan, J. W. C. Van Lint, T. Schreiter, S. P. Hoogendoorn, and
J. Vrancken, “Automatic Speed-Bias Correction with Flow-Density
Relationships,” in Proceedings of the IEEE International Conference
on Networking, Sensing and Control; Chicago, IL, US, 2010.

[14] J. Van Lint, “Empirical Evaluation of New Robust Travel Time
Estimation Algorithms,” in Compendium of papers TRB 89th annual
meeting, 2010.

[15] A. Kesting and M. Treiber, “Calculating Travel Times from Recon-
structed Spatiotemporal Traffic Data,” in Proceedings of the 4th In-
ternational Symposium Networks for Mobility, Stuttgart, 2008, iSBN:
978-3-921882-24-5.

[16] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. The MIT press, 2nd edition (September 1, 2001), 2001.

[17] G. Wallace, “The JPEG still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, 1992.

[18] M. Ng and S. T. Waller, “A computationally efficient
methodology to characterize travel time reliability using
the fast fourier transform,” Transportation Research Part B:
Methodological, vol. In Press, Corrected Proof, 2010. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V99-
4YMBVW1-1/2/74d810e4ba3e7bcc38feaaa56c24e822

	Nr 269 Check margins of bookmarked pages.
	Page 1 Top 42 Right 54 Bottom 13 pt
	Page 2 Top 24 Right 46 Bottom 11 pt
	Page 3 Top 24 Right 51 Bottom 11 pt
	Page 4 Top 24 Right 47 Bottom 11 pt
	Page 5 Top 24 Right 39 Bottom 11 pt
	Page 6 Top 24 Right 43 Bottom 11 pt
	Page 7 Top 24 Right 46 Bottom 10 pt

