12 Input-Output Model of Leontief

12.1. Motivation for input-output modelling

- Atomic power plants do not have any direct CO_{2} emissions
- However, what are the effective emission considering all involved processes recursively?
12.1. Motivation for input-output modelling

- Atomic power plants do not have any direct CO_{2} emissions
- However, what are the effective emission considering all involved processes recursively?

Problem statement

- In a modern economy, nearly everything is connected to "the rest" of the economy.
- Wanted: a quantitative description of the flows of materials, products, services, and information between the different parts of an economy.
- The input-output model (IOM) of Leontief tackles this problem by making several assumptions:
- Everu material nroduct or service is associated with a certain sector

Problem statement

- In a modern economy, nearly everything is connected to "the rest" of the economy.
- Wanted: a quantitative description of the flows of materials, products, services, and information between the different parts of an economy.
- The input-output model (IOM) of Leontief tackles this problem by making several assumptions:
- Every material, product, or service is associated with a certain sector
- To make all flows (kg, €, bytes, ...) commensurable, the common unit is a monetary unit, e.g., €

Problem statement

- In a modern economy, nearly everything is connected to "the rest" of the economy.
- Wanted: a quantitative description of the flows of materials, products, services, and information between the different parts of an economy.
- The input-output model (IOM) of Leontief tackles this problem by making several assumptions:
- Every material, product, or service is associated with a certain sector
- To make all flows ($\mathrm{kg}, €$, bytes, ...) commensurable, the common unit is a monetary unit, e.g., €
- The whole system is linear and deterministic: douple input means double output. Particularly, there is no economy of scale

Problem statement

- In a modern economy, nearly everything is connected to "the rest" of the economy.
- Wanted: a quantitative description of the flows of materials, products, services, and information between the different parts of an economy.
- The input-output model (IOM) of Leontief tackles this problem by making several assumptions:
- Every material, product, or service is associated with a certain sector
- To make all flows (kg, €, bytes, ...) commensurable, the common unit is a monetary unit, e.g., €
- The whole system is linear and deterministic: douple input means double output. Particularly, there is no economy of scale
- The whole system is in the steady state, e.g., there are no temporal changes (constant supply and demand); storage (if applicable) is neither built up nor depleted

Problem statement

- In a modern economy, nearly everything is connected to "the rest" of the economy.
- Wanted: a quantitative description of the flows of materials, products, services, and information between the different parts of an economy.
- The input-output model (IOM) of Leontief tackles this problem by making several assumptions:
- Every material, product, or service is associated with a certain sector
- To make all flows (kg, €, bytes, ...) commensurable, the common unit is a monetary unit, e.g., €
- The whole system is linear and deterministic: douple input means double output. Particularly, there is no economy of scale
- The whole system is in the steady state, e.g., there are no temporal changes (constant supply and demand); storage (if applicable) is neither built up nor depleted

Problem statement

- In a modern economy, nearly everything is connected to "the rest" of the economy.
- Wanted: a quantitative description of the flows of materials, products, services, and information between the different parts of an economy.
- The input-output model (IOM) of Leontief tackles this problem by making several assumptions:
- Every material, product, or service is associated with a certain sector
- To make all flows (kg, €, bytes, ...) commensurable, the common unit is a monetary unit, e.g., €
- The whole system is linear and deterministic: douple input means double output. Particularly, there is no economy of scale
- The whole system is in the steady state, e.g., there are no temporal changes (constant supply and demand); storage (if applicable) is neither built up nor depleted.

12.2 Specification of the IOM of Leontief

Linear, deterministic coupling of n sectors and an end consumer in the steady state:

$$
x_{i}=
$$

- x_{i} : Total output of sector i in $€$ or other monetary units per time unit y_{i} : Flow of products/services of sector i to the end consumers (and to sectors that are not explicitely considered) the steady state and to ensure a constant supply y_{j} to the end consumer

12.2 Specification of the IOM of Leontief

Linear, deterministic coupling of n sectors and an end consumer in the steady state:

$$
x_{i}=y_{i}+
$$

- x_{i} : Total output of sector i in $€$ or other monetary units per time unit
- y_{i} : Flow of products/services of sector i to the end consumers (and to sectors that are not explicitely considered)

12.2 Specification of the IOM of Leontief

Linear, deterministic coupling of n sectors and an end consumer in the steady state:

$$
x_{i}=y_{i}+\sum_{j=1}^{n} x_{i j}
$$

- x_{i} : Total output of sector i in $€$ or other monetary units per time unit
- y_{i} : Flow of products/services of sector i to the end consumers (and to sectors that are not explicitely considered)
- $x_{i j}$: Flow from sector i to j : Sector j needs a supply $x_{i j}$ from sector i to maintain the steady state and to ensure a constant supply y_{j} to the end consumer

10 coefficient reflecting linearity: In order to produce one unit, sector
j needs units from all the other sectors i, including the own.

12.2 Specification of the IOM of Leontief

Linear, deterministic coupling of n sectors and an end consumer in the steady state:

$$
x_{i}=y_{i}+\sum_{j=1}^{n} x_{i j}=y_{i}+\sum_{j=1}^{n} A_{i j} x_{j}
$$

- x_{i} : Total output of sector i in $€$ or other monetary units per time unit
- y_{i} : Flow of products/services of sector i to the end consumers (and to sectors that are not explicitely considered)
- $x_{i j}$: Flow from sector i to j : Sector j needs a supply $x_{i j}$ from sector i to maintain the steady state and to ensure a constant supply y_{j} to the end consumer
- $A_{i j}=x_{i j} / x_{j}$: IO coefficient reflecting linearity: In order to produce one unit, sector j needs $A_{i j}$ units from all the other sectors i, including the own.

Visualisation of the flows generated by atomic power plants

Total production for a given consumer's supply

IOM equation in vector-matrix notation:

$$
\boldsymbol{x}=\mathbf{A} \cdot \boldsymbol{x}+\boldsymbol{y}
$$

- $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\prime}$ production vector
- $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{\prime}$ supply vector
- $\mathbf{A}=\left(A_{i j}\right), i, j=1 \cdots n$ IOM coefficient matrix

Solving for \boldsymbol{x} by writing $(\mathbf{1}-\mathbf{A}) \boldsymbol{x}=\boldsymbol{y}$:

- $\mathbf{B}=(\mathbf{1}-\mathbf{A})^{-1}$ coefficient matrix of the final demand

Total production for a given consumer's supply

IOM equation in vector-matrix notation:

$$
\boldsymbol{x}=\mathbf{A} \cdot \boldsymbol{x}+\boldsymbol{y}
$$

- $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\prime}$ production vector
- $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{\prime}$ supply vector
- $\mathbf{A}=\left(A_{i j}\right), i, j=1 \cdots n$ IOM coefficient matrix

Solving for \boldsymbol{x} by writing $(\mathbf{1}-\mathbf{A}) \boldsymbol{x}=\boldsymbol{y}$:

$$
\boldsymbol{x}=(\mathbf{1}-\mathbf{A})^{-1} \boldsymbol{y} \equiv \mathbf{B} \boldsymbol{y}
$$

- $\mathbf{B}=(\mathbf{1}-\mathbf{A})^{-1}$ coefficient matrix of the final demand

Meaning of the matrix of the final demand B

- $B_{i j}$ denotes the needed total production from sector i in order to deliver one unit of j to the end consumer (or the not considered sectors) in the steady state
- B includes all indirect effect in an infinite recursion as can be seen from the Taylor expansion:

Meaning of the matrix of the final demand B

- $B_{i j}$ denotes the needed total production from sector i in order to deliver one unit of j to the end consumer (or the not considered sectors) in the steady state
- B includes all indirect effect in an infinite recursion as can be seen from the Taylor expansion:

$$
\mathbf{B}=(\mathbf{1}-\mathbf{A})^{-1}=\mathbf{1}+\mathbf{A}+\mathbf{A}^{2}+\mathbf{A}^{3}+\cdots=\sum_{j=0}^{\infty} \mathbf{A}^{j}
$$

12.3. Example: $1=$ transportation sector, $2=$ vehicle construction

$$
B_{11}=1+
$$

- 1: Transportation of the passengers ("end consumers")

12.3. Example: $1=$ transportation sector, $2=$ vehicle construction

$$
B_{11}=1+A_{11}+
$$

- 1: Transportation of the passengers ("end consumers")
- A_{11} : The drivers, conductors, and the administrative staff of the transportation companies need transportation themselves

12.3. Example: $1=$ transportation sector, $2=$ vehicle construction

$$
B_{11}=1+A_{11}+\sum_{k=1}^{2} A_{1 k} A_{k 1}+
$$

- 1: Transportation of the passengers ("end consumers")
- A_{11} : The drivers, conductors, and the administrative staff of the transportation companies need transportation themselves
- A_{11}^{2} : The transport of employees of the transportation companies induces additional traffic, hence the need for additional employees to scale up the supply accordingly
- $A_{12} A_{21}$: To manage operations, the transport sector must offer aditional transportation for the commutes of the workers/employees of the vehicle making sector $\left(A_{12}\right)$, so they can provide additional vehicles (A_{21}) needed by the transportation sector to maintain the steady state.

12.3. Example: $1=$ transportation sector, $2=$ vehicle construction

$$
B_{11}=1+A_{11}+\sum_{k=1}^{2} A_{1 k} A_{k 1}+\sum_{k=1}^{2} \sum_{l=1}^{2} A_{1 k} A_{k l} A_{l 1}+\ldots
$$

- 1: Transportation of the passengers ("end consumers")
- A_{11} : The drivers, conductors, and the administrative staff of the transportation companies need transportation themselves
- A_{11}^{2} : The transport of employees of the transportation companies induces additional traffic, hence the need for additional employees to scale up the supply accordingly
- $A_{12} A_{21}$: To manage operations, the transport sector must offer aditional transportation for the commutes of the workers/employees of the vehicle making sector $\left(A_{12}\right)$, so they can provide additional vehicles (A_{21}) needed by the transportation sector to maintain the steady state.
- $A_{11} A_{12} A_{21}$: Since also the employees of the transportation companies need transportation (A_{11}), even more transportation supply $\left(A_{12}\right)$ must be offered to the employees of the vehicle making companies to get the additionally needed vehicles $\left(A_{21}\right)$

Questions

? Argue that a national economy with sectors i satisfying $\sum_{j} A_{i j} x_{j}>x_{i}$ would not be sustainable or needs external help ("GDR").
n such an economy, sector i must deliver more units to operate itself $\left(A_{i i} x_{i}\right)$ and the other sectors $\left(A_{i j} x_{j}\right)$ than this sector produces in total $\left(x_{i}\right)$.

Questions

? Argue that a national economy with sectors i satisfying $\sum_{j} A_{i j} x_{j}>x_{i}$ would not be sustainable or needs external help ("GDR").
! In such an economy, sector i must deliver more units to operate itself $\left(A_{i i} x_{i}\right)$ and the other sectors $\left(A_{i j} x_{j}\right)$ than this sector produces in total $\left(x_{i}\right)$.

Questions

? Argue that a national economy with sectors i satisfying $\sum_{j} A_{i j} x_{j}>x_{i}$ would not be sustainable or needs external help ("GDR").
! In such an economy, sector i must deliver more units to operate itself $\left(A_{i i} x_{i}\right)$ and the other sectors $\left(A_{i j} x_{j}\right)$ than this sector produces in total $\left(x_{i}\right)$.
? Give reasons why all $A_{i j}$ and $B_{i j}$ are ≥ 0 and $B_{i i} \geq 1$.
! Since sectors need products and services from other sectors.

Questions

? Argue that a national economy with sectors i satisfying $\sum_{j} A_{i j} x_{j}>x_{i}$ would not be sustainable or needs external help ("GDR").
! In such an economy, sector i must deliver more units to operate itself $\left(A_{i i} x_{i}\right)$ and the other sectors $\left(A_{i j} x_{j}\right)$ than this sector produces in total $\left(x_{i}\right)$.
? Give reasons why all $A_{i j}$ and $B_{i j}$ are ≥ 0 and $B_{i i} \geq 1$.
! Since sectors need products and services from other sectors.

Questions

? Argue that a national economy with sectors i satisfying $\sum_{j} A_{i j} x_{j}>x_{i}$ would not be sustainable or needs external help ("GDR").
! In such an economy, sector i must deliver more units to operate itself $\left(A_{i i} x_{i}\right)$ and the other sectors $\left(A_{i j} x_{j}\right)$ than this sector produces in total $\left(x_{i}\right)$.
? Give reasons why all $A_{i j}$ and $B_{i j}$ are ≥ 0 and $B_{i i} \geq 1$.
! Since sectors need products and services from other sectors.
? Assume that the external demand y_{k} for products/services of sector k suddenly increases by $r_{k}=1 \%$ (e.g., driven by politics). Give a general expression for the percentaged increase of the GDP in order to re-attain the steady state.

Questions

? Argue that a national economy with sectors i satisfying $\sum_{j} A_{i j} x_{j}>x_{i}$ would not be sustainable or needs external help ("GDR").
! In such an economy, sector i must deliver more units to operate itself $\left(A_{i i} x_{i}\right)$ and the other sectors $\left(A_{i j} x_{j}\right)$ than this sector produces in total $\left(x_{i}\right)$.
? Give reasons why all $A_{i j}$ and $B_{i j}$ are ≥ 0 and $B_{i i} \geq 1$.
! Since sectors need products and services from other sectors.
? Assume that the external demand y_{k} for products/services of sector k suddenly increases by $r_{k}=1 \%$ (e.g., driven by politics). Give a general expression for the percentaged increase of the GDP in order to re-attain the steady state.
! The change of the demand vector is given by $\Delta \boldsymbol{y}=\left(0, . ., r_{k} y_{k}, 0, \ldots\right)^{\prime}$ and the change of the production vector components by $\Delta x_{i}=\sum_{j} B_{i j} y_{j}=r_{k} B_{i k} y_{k}$. Hence, the change of the total GDP is given by $\Delta x=\sum_{i} \Delta x_{i}=r_{k} \sum_{i} B_{i k} y_{k}$ and the old GDP itself by $x=\sum_{i} x_{i}=\sum_{i} \sum_{j} B_{i j} y_{j}$. Finally, the percentage increase of the total GDP is given by $\Delta x / x$

Questions (ctnd.)

? Give some additional elements and concepts needed to make the IOM dynamic against the available production $(\mathbf{1}-\mathbf{A}) \boldsymbol{x}$ and the excess demand or supply is balanced by emptying or filling the stores. If the economy is demand-driven (Keynes),
the rate of change of the production is proportional to the excess demand,
where τ_{i} is the time the sector i needs to adapt to changing demands

Questions (ctnd.)

? Give some additional elements and concepts needed to make the IOM dynamic
! After a sudden change of the demand, the demand vector \boldsymbol{y} is no longer balanced against the available production $(\mathbf{1}-\mathbf{A}) \boldsymbol{x}$ and the excess demand or supply is balanced by emptying or filling the stores. If the economy is demand-driven (Keynes), this also induces ramping up/down the production. In the simplest case, the rate of change of the production is proportional to the excess demand,

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=\frac{1}{\tau_{i}}\left[y_{i}(t)-((\mathbf{1}-\mathbf{A}) \boldsymbol{x})_{i}\right]
$$

where τ_{i} is the time the sector i needs to adapt to changing demands.

[^0]\qquad

Questions (ctnd.)

? Give some additional elements and concepts needed to make the IOM dynamic
! After a sudden change of the demand, the demand vector \boldsymbol{y} is no longer balanced against the available production $(\mathbf{1}-\mathbf{A}) \boldsymbol{x}$ and the excess demand or supply is balanced by emptying or filling the stores. If the economy is demand-driven (Keynes), this also induces ramping up/down the production. In the simplest case, the rate of change of the production is proportional to the excess demand,

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=\frac{1}{\tau_{i}}\left[y_{i}(t)-((\mathbf{1}-\mathbf{A}) \boldsymbol{x})_{i}\right]
$$

where τ_{i} is the time the sector i needs to adapt to changing demands.
? Give some additional elements and concepts needed to introduce nonlinearity reflecting the economy of scale
In an economy of scale, the IO coefficients become smaller with the number of produced units of the target sector which may be modelled, e.g., by

Questions (ctnd.)

? Give some additional elements and concepts needed to make the IOM dynamic
! After a sudden change of the demand, the demand vector \boldsymbol{y} is no longer balanced against the available production $(\mathbf{1}-\mathbf{A}) \boldsymbol{x}$ and the excess demand or supply is balanced by emptying or filling the stores. If the economy is demand-driven (Keynes), this also induces ramping up/down the production. In the simplest case, the rate of change of the production is proportional to the excess demand,

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=\frac{1}{\tau_{i}}\left[y_{i}(t)-((\mathbf{1}-\mathbf{A}) \boldsymbol{x})_{i}\right]
$$

where τ_{i} is the time the sector i needs to adapt to changing demands.
? Give some additional elements and concepts needed to introduce nonlinearity reflecting the economy of scale
! In an economy of scale, the IO coefficients become smaller with the number of produced units of the target sector which may be modelled, e.g., by

$$
A_{i j}\left(x_{j}\right)=\frac{A_{i j}(0)}{1+x_{j} / x_{j 0}}
$$

where $x_{j 0}$ is the production quantity where significal scale effects set in.

[^0]: In an economy of scale,

