

The parameter test procedures are exactly the same as that of regression models. Because we only consider the asymptotic limit, the test statistic is always Gaussian:

• Confidence interval of a parameter β_m :

$$\mathsf{Cl}_{\alpha}(\beta_m) = [\hat{\beta}_m - \Delta_{\alpha}, \hat{\beta}_m + \Delta_{\alpha}], \quad \Delta_{\alpha} = z_{1-\alpha/2}\sqrt{V_{mm}}$$

• Test of a parameter β_m for $H_0: \beta_j = \beta_{j0}, \geq \beta_{j0}, \text{ or } \leq \beta_{j0}$:

$$T = \frac{\hat{\beta}_j - \hat{\beta}_{j0}}{\sqrt{V_{jj}}} \sim N(0, 1) \ |H_0^*$$

▶ p-values for $H_0: \beta_j = \beta_{j0}, \ge \beta_{j0}, \text{ or } \le \beta_{j0}, \text{ respectively:}$

 $p_{=} = 2 \big(1 - \Phi(|t_{\mathsf{data}}|) \big), \quad p_{\leq} = 1 - \Phi(t_{\mathsf{data}}), \quad p_{\geq} = \Phi(t_{\mathsf{data}})$

As in regression, a factor 4 of more data halves the error

- The parameter test procedures are exactly the same as that of regression models. Because we only consider the asymptotic limit, the test statistic is always Gaussian:
- Confidence interval of a parameter β_m :

$$\mathsf{CI}_{\alpha}(\beta_m) = [\hat{\beta}_m - \Delta_{\alpha}, \hat{\beta}_m + \Delta_{\alpha}], \quad \Delta_{\alpha} = z_{1-\alpha/2}\sqrt{V_{mm}}$$

• Test of a parameter β_m for $H_0: \beta_j = \beta_{j0}, \geq \beta_{j0}$, or $\leq \beta_{j0}$:

$$T = \frac{\hat{\beta}_j - \hat{\beta}_{j0}}{\sqrt{V_{jj}}} \sim N(0, 1) \ |H_0^*$$

▶ p-values for $H_0: \beta_j = \beta_{j0}, \ge \beta_{j0}$, or $\le \beta_{j0}$, respectively:

 $p_{=} = 2 ig(1 - \Phi(|t_{\mathsf{data}}|) ig), \quad p_{\leq} = 1 - \Phi(t_{\mathsf{data}}), \quad p_{\geq} = \Phi(t_{\mathsf{data}})$

As in regression, a factor 4 of more data halves the error

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 の

- The parameter test procedures are exactly the same as that of regression models. Because we only consider the asymptotic limit, the test statistic is always Gaussian:
- Confidence interval of a parameter β_m :

$$\mathsf{CI}_{\alpha}(\beta_m) = [\hat{\beta}_m - \Delta_{\alpha}, \hat{\beta}_m + \Delta_{\alpha}], \quad \Delta_{\alpha} = z_{1-\alpha/2}\sqrt{V_{mm}}$$

▶ Test of a parameter β_m for $H_0: \beta_j = \beta_{j0}, \geq \beta_{j0}, \text{ or } \leq \beta_{j0}$:

$$T = \frac{\hat{\beta}_j - \hat{\beta}_{j0}}{\sqrt{V_{jj}}} \sim N(0, 1) \ |H_0^*$$

▶ p-values for $H_0: \beta_j = \beta_{j0}, \geq \beta_{j0}, \text{ or } \leq \beta_{j0}, \text{ respectively:}$

 $p_{=} = 2 \big(1 - \Phi(|t_{\mathsf{data}}|) \big), \quad p_{\leq} = 1 - \Phi(t_{\mathsf{data}}), \quad p_{\geq} = \Phi(t_{\mathsf{data}})$

As in regression, a factor 4 of more data halves the error

- The parameter test procedures are exactly the same as that of regression models. Because we only consider the asymptotic limit, the test statistic is always Gaussian:
- Confidence interval of a parameter β_m :

$$\mathsf{CI}_{\alpha}(\beta_m) = [\hat{\beta}_m - \Delta_{\alpha}, \hat{\beta}_m + \Delta_{\alpha}], \quad \Delta_{\alpha} = z_{1-\alpha/2}\sqrt{V_{mm}}$$

▶ Test of a parameter β_m for $H_0: \beta_j = \beta_{j0}, \geq \beta_{j0}, \text{ or } \leq \beta_{j0}$:

$$T = \frac{\hat{\beta}_j - \hat{\beta}_{j0}}{\sqrt{V_{jj}}} \sim N(0, 1) \ |H_0^*$$

▶ *p*-values for $H_0: \beta_j = \beta_{j0}, \ge \beta_{j0}, \text{ or } \le \beta_{j0}, \text{ respectively:}$

$$p_{=} = 2 ig(1 - \Phi(|t_{\mathsf{data}}|) ig), \quad p_{\leq} = 1 - \Phi(t_{\mathsf{data}}), \quad p_{\geq} = \Phi(t_{\mathsf{data}})$$

As in regression, a factor 4 of more data halves the error

(日)

- The parameter test procedures are exactly the same as that of regression models. Because we only consider the asymptotic limit, the test statistic is always Gaussian:
- Confidence interval of a parameter β_m :

$$\mathsf{CI}_{\alpha}(\beta_m) = [\hat{\beta}_m - \Delta_{\alpha}, \hat{\beta}_m + \Delta_{\alpha}], \quad \Delta_{\alpha} = z_{1-\alpha/2}\sqrt{V_{mm}}$$

▶ Test of a parameter β_m for $H_0: \beta_j = \beta_{j0}, \geq \beta_{j0}, \text{ or } \leq \beta_{j0}$:

$$T = \frac{\hat{\beta}_j - \hat{\beta}_{j0}}{\sqrt{V_{jj}}} \sim N(0, 1) \ |H_0^*$$

▶ p-values for $H_0: \beta_j = \beta_{j0}$, $\geq \beta_{j0}$, or $\leq \beta_{j0}$, respectively:

$$p_{=} = 2 \big(1 - \Phi(|t_{\mathsf{data}}|) \big), \quad p_{\leq} = 1 - \Phi(t_{\mathsf{data}}), \quad p_{\geq} = \Phi(t_{\mathsf{data}})$$

As in regression, a factor 4 of more data halves the error

10.2. Likelihood-Ratio (LR) Test

Like in regression (F-test), one sometimes wants to test null hypotheses fixing several parameters *simultaneously* to given values, i.e., H_0 corresponds to a **restraint model**

H₀: The restraint model with some fixed parameters and M_r remaining parameters describes the data as well as the full model with M parameters

Test statistics:

$$\lambda^{\mathsf{LR}} = 2\ln\left(\frac{L\left(\hat{\boldsymbol{\beta}}\right)}{L^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)}\right) = 2\left[\tilde{L}\left(\hat{\boldsymbol{\beta}}\right) - \tilde{L}^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)\right] \sim \chi^{2}(M - M_{r}) \text{ if } H_{0}$$

▶ Data realization: calibrate both M and M_r and evaluate λ_{data}^{LR}

• Result: reject H_0 at α based on the $1 - \alpha$ quantile:

 $\lambda_{\rm data}^{\rm LR}>\chi_{1-\alpha,M-M_r}^2$

p-value: $p = 1 - F_{\chi^2(M-M_r)}\left(\lambda_{\mathsf{data}}^{\mathsf{LR}}
ight)$

(日)

(日)

10.2. Likelihood-Ratio (LR) Test

Like in regression (F-test), one sometimes wants to test null hypotheses fixing several parameters *simultaneously* to given values, i.e., H_0 corresponds to a **restraint model**

▶ *H*₀: The restraint model with some fixed parameters and *M_r* remaining parameters describes the data as well as the full model with *M* parameters

Test statistics:

$$\lambda^{\mathsf{LR}} = 2\ln\left(\frac{L\left(\hat{\boldsymbol{\beta}}\right)}{L^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)}\right) = 2\left[\tilde{L}\left(\hat{\boldsymbol{\beta}}\right) - \tilde{L}^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)\right] \sim \chi^{2}(M - M_{r}) \text{ if } H_{0}$$

Data realization: calibrate both M and M_r and evaluate λ_{data}^{LR}

• Result: reject H_0 at α based on the $1 - \alpha$ quantile:

 $\lambda_{\rm data}^{\rm LR}>\chi_{1-\alpha,M-M_r}^2$

p-value: $p = 1 - F_{\chi^2(M-M_r)} \left(\lambda_{\mathsf{data}}^{\mathsf{LR}}
ight)$

10.2. Likelihood-Ratio (LR) Test

Like in regression (F-test), one sometimes wants to test null hypotheses fixing several parameters *simultaneously* to given values, i.e., H_0 corresponds to a **restraint model**

- ▶ *H*₀: The restraint model with some fixed parameters and *M_r* remaining parameters describes the data as well as the full model with *M* parameters
- Test statistics:

$$\lambda^{\mathsf{LR}} = 2\ln\left(\frac{L\left(\hat{\boldsymbol{\beta}}\right)}{L^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)}\right) = 2\left[\tilde{L}\left(\hat{\boldsymbol{\beta}}\right) - \tilde{L}^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)\right] \sim \chi^{2}(M - M_{r}) \text{ if } H_{0}$$

▶ Data realization: calibrate both M and M_r and evaluate $\lambda_{\mathsf{data}}^{\mathsf{LR}}$

Result: reject H_0 at α based on the $1 - \alpha$ quantile:

$$\lambda_{\rm data}^{\rm LR}>\chi_{1-\alpha,M-M_r}^2$$

p-value: $p = 1 - F_{\chi^2(M-M_r)} \left(\lambda_{\mathsf{data}}^{\mathsf{LR}} \right)$

(日)

(日)

10.2. Likelihood-Ratio (LR) Test

Like in regression (F-test), one sometimes wants to test null hypotheses fixing several parameters *simultaneously* to given values, i.e., H_0 corresponds to a **restraint model**

- ▶ *H*₀: The restraint model with some fixed parameters and *M_r* remaining parameters describes the data as well as the full model with *M* parameters
- Test statistics:

$$\lambda^{\mathsf{LR}} = 2\ln\left(\frac{L\left(\hat{\boldsymbol{\beta}}\right)}{L^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)}\right) = 2\left[\tilde{L}\left(\hat{\boldsymbol{\beta}}\right) - \tilde{L}^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)\right] \sim \chi^{2}(M - M_{r}) \text{ if } H_{0}$$

▶ Data realization: calibrate both M and M_r and evaluate $\lambda_{\mathsf{data}}^{\mathsf{LR}}$

Result: reject H_0 at α based on the $1 - \alpha$ quantile:

 $\lambda_{\rm data}^{\rm LR} > \chi_{1-\alpha,M-M_r}^2$

p-value: $p = 1 - F_{\chi^2(M-M_r)} \left(\lambda_{\mathsf{data}}^{\mathsf{LR}} \right)$

10.2. Likelihood-Ratio (LR) Test

Like in regression (F-test), one sometimes wants to test null hypotheses fixing several parameters *simultaneously* to given values, i.e., H_0 corresponds to a **restraint model**

- ▶ *H*₀: The restraint model with some fixed parameters and *M_r* remaining parameters describes the data as well as the full model with *M* parameters
- Test statistics:

$$\lambda^{\mathsf{LR}} = 2\ln\left(\frac{L\left(\hat{\boldsymbol{\beta}}\right)}{L^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)}\right) = 2\left[\tilde{L}\left(\hat{\boldsymbol{\beta}}\right) - \tilde{L}^{\mathsf{r}}\left(\hat{\boldsymbol{\beta}}^{\mathsf{r}}\right)\right] \sim \chi^{2}(M - M_{r}) \text{ if } H_{0}$$

▶ Data realization: calibrate both M and M_r and evaluate $\lambda_{\mathsf{data}}^{\mathsf{LR}}$

Result: reject H_0 at α based on the $1 - \alpha$ quantile:

$$\lambda_{\rm data}^{\rm LR}>\chi_{1-\alpha,M-M_r}^2$$

p-value: $p = 1 - F_{\chi^2(M-M_r)} \left(\lambda_{\text{data}}^{\text{LR}} \right)$

(日)

Example: Mode choice for the route to this lecture

Distance class <i>n</i>	Distance r_n	$i=1~({\sf ped}/{\sf bike})$	$i=2 \; (PT/car)$
n = 1: 0-1 km	0.5 km	7	1
n = 2: 1-2 km	1.5 km	6	4
n = 3: 2-5 km	3.5 km	6	12
n = 4: 5-10 km	7.5 km	1	10
n=5: 10-20 km	15.0 km	0	5

$$V_{n1}(\beta_1, \beta_2) = \beta_1 r_n + \beta_2,$$

$$V_{n2}(\beta_1, \beta_2) = 0$$

- β₁: Difference in distance sensitivity (utility/km) for choosing ped/bike over PT/car (expected < 0)
- β_2 : Utility difference ped/bike over PT/car at zero distance (> 0)

Do the data allow to distinguish this model from the trivial model $V_{ni} = 0$?

Example: Mode choice for the route to this lecture

Distance class <i>n</i>	Distance r_n	$i=1~({\sf ped}/{\sf bike})$	$i=2 \; (PT/car)$
n = 1: 0-1 km	0.5 km	7	1
n = 2: 1-2 km	1.5 km	6	4
n = 3: 2-5 km	3.5 km	6	12
n = 4: 5-10 km	7.5 km	1	10
n=5: 10-20 km	15.0 km	0	5

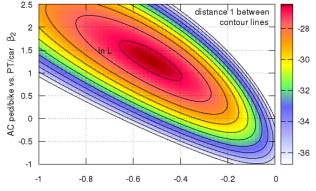
$$V_{n1}(\beta_1, \beta_2) = \beta_1 r_n + \beta_2,$$

$$V_{n2}(\beta_1, \beta_2) = 0$$

- β₁: Difference in distance sensitivity (utility/km) for choosing ped/bike over PT/car (expected < 0)
- β_2 : Utility difference ped/bike over PT/car at zero distance (> 0)

Do the data allow to distinguish this model from the trivial model $V_{ni} = 0$?

LR test for the corresponding Logit models



Differential distance sensitivity B1

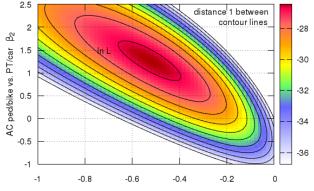
• H_0 : The trivial model $V_{ni} = 0$ describes the data as well as the full model $V_{n1}(\beta_1, \beta_2) = (\beta_1 r_n + \beta_2)\delta_{i1}$

► Test statistics: $\lambda^{LR} = 2 \left[\tilde{L}(\hat{\beta}_1, \hat{\beta}_2) - \tilde{L}(0, 0) \right] \sim \chi^2(2) |H_0|$

▶ Data realization (1 \tilde{L} -unit per contour): $\lambda_{data}^{LR} = 2(-26.5 + 35.5) = 18$

▶ Decision: Rejection range $\lambda^{LR} > \chi^2_{2.0.95} = 5.99 \Rightarrow H_0$ rejected.

LR test for the corresponding Logit models



Differential distance sensitivity B1

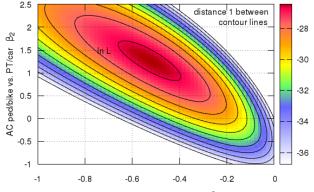
• H_0 : The trivial model $V_{ni} = 0$ describes the data as well as the full model $V_{n1}(\beta_1, \beta_2) = (\beta_1 r_n + \beta_2)\delta_{i1}$

► Test statistics: $\lambda^{LR} = 2 \left[\tilde{L}(\hat{\beta}_1, \hat{\beta}_2) - \tilde{L}(0, 0) \right] \sim \chi^2(2) |H_0|$

Data realization (1 *L̃*-unit per contour): λ^{LR}_{data} = 2(-26.5 + 35.5) = 18
 Decision: Rejection range λ^{LR} > χ²_{2.0.95} = 5.99 ⇒ H₀ rejected.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ●

LR test for the corresponding Logit models



Differential distance sensitivity β₁

• H_0 : The trivial model $V_{ni} = 0$ describes the data as well as the full model $V_{n1}(\beta_1, \beta_2) = (\beta_1 r_n + \beta_2)\delta_{i1}$

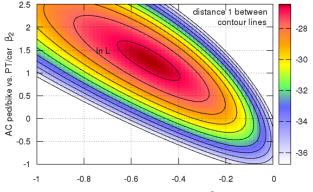
 $\blacktriangleright \ \ {\rm Test \ statistics:} \ \ \lambda^{\rm LR} = 2\left[\tilde{L}(\hat{\beta}_1,\hat{\beta}_2) - \tilde{L}(0,0)\right] \sim \chi^2(2)|H_0$

▶ Data realization (1 \tilde{L} -unit per contour): $\lambda_{data}^{LR} = 2(-26.5 + 35.5) = 18$

Decision: Rejection range $\lambda^{\sf LR} > \chi^2_{2,0.95} = 5.99 \Rightarrow H_0$ rejected.

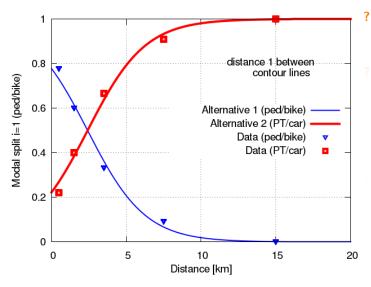
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ●

LR test for the corresponding Logit models



Differential distance sensitivity β₁

- H_0 : The trivial model $V_{ni} = 0$ describes the data as well as the full model $V_{n1}(\beta_1, \beta_2) = (\beta_1 r_n + \beta_2)\delta_{i1}$
- ► Test statistics: $\lambda^{LR} = 2\left[\tilde{L}(\hat{\beta}_1, \hat{\beta}_2) \tilde{L}(0, 0)\right] \sim \chi^2(2)|H_0|$
- ▶ Data realization (1 \tilde{L} -unit per contour): $\lambda_{data}^{LR} = 2(-26.5 + 35.5) = 18$
- ▶ Decision: Rejection range $\lambda^{LR} > \chi^2_{2,0.95} = 5.99 \Rightarrow H_0$ rejected.

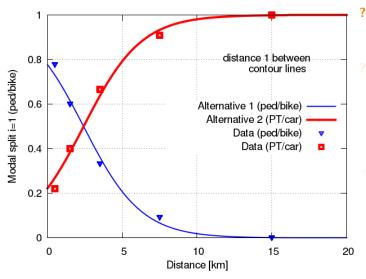


What would be the modeled ped/bike modal split for the null model $V_{ni} = 0$? 50:50

Read off from the \tilde{L} contour plot the parameter of the AC-only model $V_{ni} = \beta_2 \delta_{i1}$ and give the modeled modal split $\hat{\beta}_2 = \ln(P_1/P_2) = -0.5$, OK with $P_1/P_2 = e^{\hat{\beta}_2} \approx N_1/N_2 = 20/32$

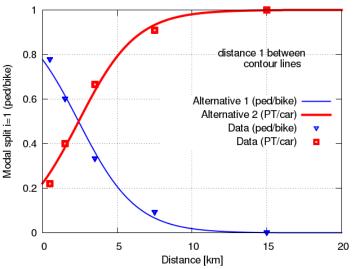
Motivate the negative correlation between the parameter errors This makes at least sure that, in case of correlated errors, about the same fraction chooses alternative 2 as for the calibrated

< □ > < @ > < E > < E > E の



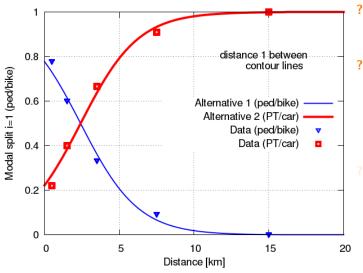
- What would be the modeled ped/bike modal split for the null model $V_{ni} = 0$? 50:50
- Read off from the \tilde{L} contour plot the parameter of the AC-only model $V_{ni} = \beta_2 \delta_{i1}$ and give the modeled modal split $\hat{\beta}_2 = \ln(P_1/P_2) = -0.5$, OK with $P_1/P_2 = e^{\hat{\beta}_2} \approx N_1/N_2 = 20/32$
- Motivate the negative correlation between the parameter errors This makes at least sure that, in case of correlated errors, about the same fraction chooses alternative 2 as for the calibrated

< □ > < @ > < E > < E > E の

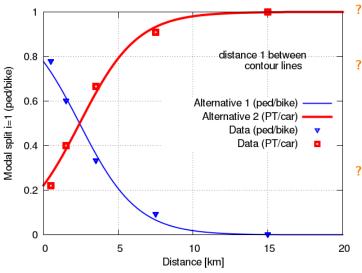


- ? What would be the modeled ped/bike modal split for the null model $V_{ni} = 0$? 50:50
- ? Read off from the \tilde{L} contour plot the parameter of the AC-only model $V_{ni} = \beta_2 \delta_{i1}$ and give the modeled modal split $\tilde{\beta}_2 = \ln(P_1/P_2) = -0.5$, OK with $P_1/P_2 = e^{\beta_2} \approx N_1/N_2 = 20/32$
- ? Motivate the negative correlation between the parameter errors This makes at least sure that, in case of correlated errors, about the same fraction chooses alternative 2 as for the calibrated model

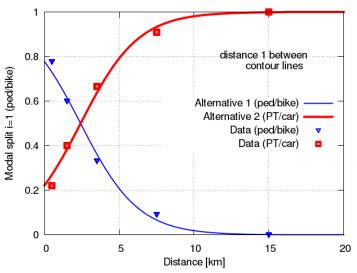
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ)</p>



- What would be the modeled ped/bike modal split for the null model $V_{ni} = 0$? 50:50
- ? Read off from the \tilde{L} contour plot the parameter of the AC-only model $V_{ni} = \beta_2 \delta_{i1}$ and give the modeled modal split $\hat{\beta}_2 = \ln(P_1/P_2) = -0.5$, OK with $P_1/P_2 = e^{\hat{\beta}_2} \approx N_1/N_2 = 20/32$
- ? Motivate the negative correlation between the parameter errors This makes at least sure that, in case of correlated errors, about the same fraction chooses alternative 2 as for the calibrated model



- What would be the modeled ped/bike modal split for the null model $V_{ni} = 0$? 50:50
- ? Read off from the \tilde{L} contour plot the parameter of the AC-only model $V_{ni} = \beta_2 \delta_{i1}$ and give the modeled modal split $\hat{\beta}_2 = \ln(P_1/P_2) = -0.5$, OK with $P_1/P_2 = e^{\hat{\beta}_2} \approx N_1/N_2 = 20/32$
- ? Motivate the negative correlation between the parameter errors This makes at least sure that, in case of correlated errors, about the same fraction chooses alternative 2 as for the calibrated model



- What would be the modeled ped/bike modal split for the null model $V_{ni} = 0$? 50:50
- P Read off from the \tilde{L} contour plot the parameter of the AC-only model $V_{ni} = \beta_2 \delta_{i1}$ and give the modeled modal split $\hat{\beta}_2 = \ln(P_1/P_2) = -0.5$, OK with $P_1/P_2 = e^{\hat{\beta}_2} \approx N_1/N_2 = 20/32$
- ? Motivate the negative correlation between the parameter errors This makes at least sure that, in case of correlated errors, about the same fraction chooses alternative 2 as for the calibrated model

- The parameter tests for equality and the LR test are related to significance: Is the more complicated of two nested models significantly better in describing the data?
- This can be used to find the best model using the top-down ansatz:
 Make is as simple as possible but not simpler!
- Problem: For very big samples, nearly any new parameter gives significance and the top-down ansatz fails
- More importantly: Significance/LR tests cannot give evidence for missing but relevant factors
- A further problem: We cannot compare non-nested models
- Finally, in reality, one often is interested in effect strength (difference in the fit and validation quality), not significance

- The parameter tests for equality and the LR test are related to significance: Is the more complicated of two nested models significantly better in describing the data?
- This can be used to find the best model using the top-down ansatz:
 Make is as simple as possible but not simpler!
- Problem: For very big samples, nearly any new parameter gives significance and the top-down ansatz fails
- More importantly: Significance/LR tests cannot give evidence for missing but relevant factors
- A further problem: We cannot compare non-nested models
- Finally, in reality, one often is interested in effect strength (difference in the fit and validation quality), not significance

- The parameter tests for equality and the LR test are related to significance: Is the more complicated of two nested models significantly better in describing the data?
- This can be used to find the best model using the top-down ansatz:
 Make is as simple as possible but not simpler!
- Problem: For very big samples, nearly any new parameter gives significance and the top-down ansatz fails
- More importantly: Significance/LR tests cannot give evidence for missing but relevant factors
- A further problem: We cannot compare non-nested models
- Finally, in reality, one often is interested in effect strength (difference in the fit and validation quality), not significance

- The parameter tests for equality and the LR test are related to significance: Is the more complicated of two nested models significantly better in describing the data?
- This can be used to find the best model using the top-down ansatz:
 Make is as simple as possible but not simpler!
- Problem: For very big samples, nearly any new parameter gives significance and the top-down ansatz fails
- More importantly: Significance/LR tests cannot give evidence for missing but relevant factors
- ► A further problem: We cannot compare non-nested models
- Finally, in reality, one often is interested in effect strength (difference in the fit and validation quality), not significance

(日)

10.3 Goodness-of-Fit Measures

- The parameter tests for equality and the LR test are related to significance: Is the more complicated of two nested models significantly better in describing the data?
- This can be used to find the best model using the top-down ansatz:
 Make is as simple as possible but not simpler!
- Problem: For very big samples, nearly any new parameter gives significance and the top-down ansatz fails
- More importantly: Significance/LR tests cannot give evidence for missing but relevant factors
- A further problem: We cannot compare non-nested models
- Finally, in reality, one often is interested in effect strength (difference in the fit and validation quality), not significance

- The parameter tests for equality and the LR test are related to significance: Is the more complicated of two nested models significantly better in describing the data?
- This can be used to find the best model using the top-down ansatz:
 Make is as simple as possible but not simpler!
- Problem: For very big samples, nearly any new parameter gives significance and the top-down ansatz fails
- More importantly: Significance/LR tests cannot give evidence for missing but relevant factors
- A further problem: We cannot compare non-nested models
- Finally, in reality, one often is interested in effect strength (difference in the fit and validation quality), not significance

Akaike's information criterion:

$$\mathsf{AIC} = -2\tilde{L} + 2M\frac{N}{N - (M+1)}$$

• Bayesian information criterion:

$$\mathsf{BIC} = -2\tilde{L} + M\ln N$$

N: number of decisions; M: number of parameters

- Both criteria give the needed additional information (in bit) to obtain the actual micro-data from the model's prediction, including an over-fitting penalty: the lower, the better.
- ▶ Both the AIC and BIC are equivalent to the corresponding GoF measures of regression.
- the BIC focuses more on parsimonious models (low M).
- ► For nested models satisfying the null hypothesis of the LR test and N ≫ M, the expected AIC is the same (verify!). However, since the AIC is an absolute measure, it allows comparing non-nested models.

Akaike's information criterion:

$$\mathsf{AIC} = -2\tilde{L} + 2M\frac{N}{N - (M+1)}$$

$$\mathsf{BIC} = -2\tilde{L} + M\ln N$$

- N: number of decisions; M: number of parameters
 - Both criteria give the needed additional information (in bit) to obtain the actual micro-data from the model's prediction, including an over-fitting penalty: the lower, the better.
 - Both the AIC and BIC are equivalent to the corresponding GoF measures of regression.
 - the BIC focuses more on parsimonious models (low M).
 - ▶ For nested models satisfying the null hypothesis of the LR test and $N \gg M$, the expected AIC is the same (verify!). However, since the AIC is an absolute measure, it allows comparing non-nested models.

Akaike's information criterion:

$$\mathsf{AIC} = -2\tilde{L} + 2M\frac{N}{N - (M+1)}$$

$$\mathsf{BIC} = -2\tilde{L} + M\ln N$$

- N: number of decisions; M: number of parameters
 - Both criteria give the needed additional information (in bit) to obtain the actual micro-data from the model's prediction, including an over-fitting penalty: the lower, the better.
 - ▶ Both the AIC and BIC are equivalent to the corresponding GoF measures of regression.
 - the BIC focuses more on parsimonious models (low M).
 - ▶ For nested models satisfying the null hypothesis of the LR test and $N \gg M$, the expected AIC is the same (verify!). However, since the AIC is an absolute measure, it allows comparing non-nested models.

Akaike's information criterion:

$$\mathsf{AIC} = -2\tilde{L} + 2M\frac{N}{N - (M+1)}$$

$$\mathsf{BIC} = -2\tilde{L} + M\ln N$$

- N: number of decisions; M: number of parameters
 - Both criteria give the needed additional information (in bit) to obtain the actual micro-data from the model's prediction, including an over-fitting penalty: the lower, the better.
 - ▶ Both the AIC and BIC are equivalent to the corresponding GoF measures of regression.
 - ▶ the BIC focuses more on parsimonious models (low M).
 - For nested models satisfying the null hypothesis of the LR test and $N \gg M$, the expected AIC is the same (verify!). However, since the AIC is an absolute measure, it allows comparing non-nested models.

Akaike's information criterion:

$$\mathsf{AIC} = -2\tilde{L} + 2M\frac{N}{N - (M+1)}$$

$$\mathsf{BIC} = -2\tilde{L} + M\ln N$$

- N: number of decisions; M: number of parameters
 - Both criteria give the needed additional information (in bit) to obtain the actual micro-data from the model's prediction, including an over-fitting penalty: the lower, the better.
 - ▶ Both the AIC and BIC are equivalent to the corresponding GoF measures of regression.
 - the BIC focuses more on parsimonious models (low M).
 - ▶ For nested models satisfying the null hypothesis of the LR test and N ≫ M, the expected AIC is the same (verify!). However, since the AIC is an absolute measure, it allows comparing non-nested models.

LR-Index resp. McFadden's R^2 :

$$\rho^2 = 1 - \frac{\tilde{L}}{\tilde{L}^0}$$

► Adjusted LR-Index/McFadden's R²:

$$\bar{\rho}^2 = 1 - \frac{\tilde{L} - M}{\tilde{L}^0}$$

- The LR-Index ρ^2 and the adjusted LR-Index $\bar{\rho}^2$ correspond to the coefficient of determination R^2 and the adjusted coefficient \tilde{R}^2 of regression models, respectively: The higher, the better.
- In contrast to regression models, even the best-fitting model has ρ^2 and $\bar{\rho}^2$ values far from 1. Values as low as 0.3 may characterize a good model, see the Example 9.2.1, while $R^2 = 0.3$ means a really bad fit for a regression model.
- An over-fitted model with M parameters fitting N = M decisions reaches the "ideal" LR-index value $\rho^2 = 1$ while $\bar{\rho}^2$ is near zero.

LR-Index resp. McFadden's R^2 :

$$\rho^2 = 1 - \frac{\tilde{L}}{\tilde{L}^0}$$

► Adjusted LR-Index/McFadden's R²:

$$\bar{\rho}^2 = 1 - \frac{\tilde{L} - M}{\tilde{L}^0}$$

- ► The LR-Index ρ^2 and the adjusted LR-Index $\bar{\rho}^2$ correspond to the coefficient of determination R^2 and the adjusted coefficient \tilde{R}^2 of regression models, respectively: The higher, the better.
- In contrast to regression models, even the best-fitting model has ρ^2 and $\bar{\rho}^2$ values far from 1. Values as low as 0.3 may characterize a good model, see the Example 9.2.1, while $R^2 = 0.3$ means a really bad fit for a regression model.
- An over-fitted model with M parameters fitting N = M decisions reaches the "ideal" LR-index value $\rho^2 = 1$ while $\bar{\rho}^2$ is near zero.

LR-Index resp. McFadden's R^2 :

$$\rho^2 = 1 - \frac{L}{\tilde{L}^0}$$

► Adjusted LR-Index/McFadden's R²:

$$\bar{\rho}^2 = 1 - \frac{\tilde{L} - M}{\tilde{L}^0}$$

- The LR-Index ρ^2 and the adjusted LR-Index $\bar{\rho}^2$ correspond to the coefficient of determination R^2 and the adjusted coefficient \tilde{R}^2 of regression models, respectively: The higher, the better.
- ▶ In contrast to regression models, even the best-fitting model has ρ^2 and $\bar{\rho}^2$ values far from 1. Values as low as 0.3 may characterize a good model, see the Example 9.2.1, while $R^2 = 0.3$ means a really bad fit for a regression model.

An over-fitted model with M parameters fitting N = M decisions reaches the "ideal" LR-index value $\rho^2 = 1$ while $\bar{\rho}^2$ is near zero.

LR-Index resp. McFadden's R^2 :

$$\rho^2 = 1 - \frac{L}{\tilde{L}^0}$$

► Adjusted LR-Index/McFadden's R²:

$$\bar{\rho}^2 = 1 - \frac{\tilde{L} - M}{\tilde{L}^0}$$

- The LR-Index ρ^2 and the adjusted LR-Index $\bar{\rho}^2$ correspond to the coefficient of determination R^2 and the adjusted coefficient \tilde{R}^2 of regression models, respectively: The higher, the better.
- ▶ In contrast to regression models, even the best-fitting model has ρ^2 and $\bar{\rho}^2$ values far from 1. Values as low as 0.3 may characterize a good model, see the Example 9.2.1, while $R^2 = 0.3$ means a really bad fit for a regression model.
- An over-fitted model with M parameters fitting N = M decisions reaches the "ideal" LR-index value $\rho^2 = 1$ while $\bar{\rho}^2$ is near zero.

- Piscuss the model to be tested, the AC-only model, and the trivial model in the context of weather forecasts
 Full forecast info, info from climate table, 50:50
- ? Give the log-likelihood of the AC-only and trivial models if there are I alternatives and N_i decisions for alternative i (total number of decisions $N = \sum_{i=1}^{I} N_i$) Trivial model: $P_{ni} = 1/I$, $\tilde{L} = \sum_n \ln P_{i_n} = \sum_i N_i \ln P_i = -N \ln I$; AC-only model: $P_{ni} = N_i/N$, $\tilde{L} = \sum_i N_i \ln P_i = N \ln N - \sum_i N_i \ln N_i$
- ? Consider a binary choice situation where the *N*/2 persons with short trips chose the pedestrian/bike option with a probability of 3/4, and the PT/car option with 1/4. The other *N*/2 persons with long trips had the reverse modal split with a ped/bike usage of 25%, only.
 What would be the LR-index for the "perfect" model exactly reproducing the observed 3:1 and 1:3 modal splits for the short and long trips, respectively?

- Piscuss the model to be tested, the AC-only model, and the trivial model in the context of weather forecasts
 Full forecast info, info from climate table, 50:50
- ? Give the log-likelihood of the AC-only and trivial models if there are I alternatives and N_i decisions for alternative i (total number of decisions $N = \sum_{i=1}^{I} N_i$) Trivial model: $P_{ni} = 1/I$, $\tilde{L} = \sum_n \ln P_{i_n} = \sum_i N_i \ln P_i = -N \ln I$; AC-only model: $P_{ni} = N_i/N$, $\tilde{L} = \sum_i N_i \ln P_i = N \ln N - \sum_i N_i \ln N_i$
- ? Consider a binary choice situation where the N/2 persons with short trips chose the pedestrian/bike option with a probability of 3/4, and the PT/car option with 1/4. The other N/2 persons with long trips had the reverse modal split with a ped/bike usage of 25 %, only.
 - What would be the LR-index for the "perfect" model exactly reproducing the observed 3:1 and 1:3 modal splits for the short and long trips, respectively? (less than 0.18)

- Discuss the model to be tested, the AC-only model, and the trivial model in the context of weather forecasts
 Full forecast info, info from climate table, 50:50
- ? Give the log-likelihood of the AC-only and trivial models if there are I alternatives and N_i decisions for alternative i (total number of decisions $N = \sum_{i=1}^{I} N_i$) Trivial model: $P_{ni} = 1/I$, $\tilde{L} = \sum_n \ln P_{i_n} = \sum_i N_i \ln P_i = -N \ln I$; AC-only model: $P_{ni} = N_i/N$, $\tilde{L} = \sum_i N_i \ln P_i = N \ln N - \sum_i N_i \ln N_i$
- ? Consider a binary choice situation where the N/2 persons with short trips chose the pedestrian/bike option with a probability of 3/4, and the PT/car option with 1/4. The other N/2 persons with long trips had the reverse modal split with a ped/bike usage of 25 %, only.

What would be the LR-index for the "perfect" model exactly reproducing the observed 3:1 and 1:3 modal splits for the short and long trips, respectively? (less than 0.18)

- Discuss the model to be tested, the AC-only model, and the trivial model in the context of weather forecasts
 Full forecast info, info from climate table, 50:50
- ? Give the log-likelihood of the AC-only and trivial models if there are I alternatives and N_i decisions for alternative i (total number of decisions $N = \sum_{i=1}^{I} N_i$) Trivial model: $P_{ni} = 1/I$, $\tilde{L} = \sum_n \ln P_{i_n} = \sum_i N_i \ln P_i = -N \ln I$; AC-only model: $P_{ni} = N_i/N$, $\tilde{L} = \sum_i N_i \ln P_i = N \ln N - \sum_i N_i \ln N_i$
- ? Consider a binary choice situation where the N/2 persons with short trips chose the pedestrian/bike option with a probability of 3/4, and the PT/car option with 1/4. The other N/2 persons with long trips had the reverse modal split with a ped/bike usage of 25%, only.

What would be the LR-index for the "perfect" model exactly reproducing the observed 3:1 and 1:3 modal splits for the short and long trips, respectively? (less than 0.18)

- Discuss the model to be tested, the AC-only model, and the trivial model in the context of weather forecasts
 Full forecast info, info from climate table, 50:50
- ? Give the log-likelihood of the AC-only and trivial models if there are I alternatives and N_i decisions for alternative i (total number of decisions $N = \sum_{i=1}^{I} N_i$) Trivial model: $P_{ni} = 1/I$, $\tilde{L} = \sum_n \ln P_{i_n} = \sum_i N_i \ln P_i = -N \ln I$; AC-only model: $P_{ni} = N_i/N$, $\tilde{L} = \sum_i N_i \ln P_i = N \ln N - \sum_i N_i \ln N_i$
- ? Consider a binary choice situation where the N/2 persons with short trips chose the pedestrian/bike option with a probability of 3/4, and the PT/car option with 1/4. The other N/2 persons with long trips had the reverse modal split with a ped/bike usage of 25 %, only.

What would be the LR-index for the "perfect" model exactly reproducing the observed 3:1 and 1:3 modal splits for the short and long trips, respectively? (less than 0.18)