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9.1. Maximum-Likelihood Estimation: the likelihood function

I The maximum-likelihood (ML) estimation is applicable for general stochastic
models where the probabilities depend on a parameter vector β

I The goal is to maximize the likelihood function L(β), i.e., the probability that the
model predicts all data points (yn,xn), n = 1, ..., N :

L(β) = P
(
ŷ1(β) = y1, ..., ŷN (β) = yN

)
where ŷn = ŷ(xn) gives the model estimate for xn

I For continuous endogenous variables, the likelihood function is given by the
multi-dimensional probability density at the data points:

L(β) = fŷ1(β),...,ŷN (β)(y1, ...,yN )

? Verify that the density formulation is equivalent to the probability definition by
requiring the model estimations to be in small intervals around the data instead of
hitting the data exactly.

! The multi-dimensional probability density f(.) is defined such that
dP = fŷ1,...,ŷN (y)dNy. Keeping dNy small and constant, dP and thus P is
maximized if and only if f(.) is maximized.
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Maximum-likelihood estimation

I The ML method maximizes the likelihood function:

β̂ = arg max
β

L(β)

I Equivalently, and often better, one maximizes the log-likelihood:

β̂ = arg max
β

L̃(β), L̃(β) = lnL(β)

? Why it does not matter whether to maximize the likelihood or the log-likelihood?

! Since, as a probability or probability density, L > 0 and the log function is defined
and strictly monotonously increasing in this range. Since (i) in this case

x > y ⇔ f(x) > f(y)

(ii) the maximum function is based on this inequality relation, the argument of the
maximum remains unchanged.
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Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the
same result, at least if the statistical Gauß-Markow conditions are satisfied?

L(β)
εn independent

=

N∏
n=1

fn(yn)
εn∼i.d.N(0,σ2)

=

N∏
n=1

1√
2πσ2

exp

[
−(yn − βxn)2

2σ2

]
,

L̃(β) =

N∑
n=1

ln fn(yn) =

N∑
n=1

{
−1

2
(ln 2π + lnσ2)−

[
(yn − βxn)2

2σ2

]}
= −N

2
(ln 2π + lnσ2)− 1

2σ2
(y − Xβ)′(y − Xβ)

Except for the irrelevant additive and multiplicative constants, this is the SSE function of
the OLS method and therefore leads to the same estimator!

? Why it is possible to express L(β) as a product?

! Since the random terms εn ∼ i.i.dN(0, σ2), particularly, they are independent from
each other
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Application 2: Discrete-choice models

I Probability to predict the chosen alternative in for a single decision n:

P
(
Ŷ n = yn

)
= P

(
Ŷn1 = yn1, ..., ŶnI = ynI

)
=

I∏
i=1

[Pni(β)]yni = Pnin(β)

(this relies on the exclusivity/completeness of An and of independent RUs)

I Probability to predict all the decisions correctly assuming independent decisions:

L(β) = P (Y1(β) = y1, ...,YN (β) = yN )

=

N∏
n=1

I∏
i=1

[Pni(β)]yni

ML estimation:

β̂ = arg max
β

L̃(β), L̃(β) =

N∑
n=1

I∑
i=1

yni lnPni(β) =

N∑
n=1

lnPnin(β)
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Question

? Show that, in deriving the main ML result L̃ =∑
n

∑
i yni lnPni, the random utilities need not to be un-

correlated between alternatives, only between choices

! Because of the exclusivity/completeness requirement for the
alternatives, exactly one alternative can be chosen per de-
cision so it is enough to maximize the corresponding prob-
ability (which, of course, depends on possible correlations)
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Estimating models with only ACs
If there are no exogenous variables, we are left with just the ACs reflecting that people
prefer certain alternatives over others for unknown reasons:

Vni =

I−1∑
m=1

βmδmi or Vni = βi if i 6= I, VnI = 0

This AC-only model will be the “reference case” when estimating the model quality, e.g.,
by the likelihood-ratio index.

? Show that the estimated models gives probabilities Pni = Pi that are equal to the observed
choice fractions Ni/N . (Hint: Lagrange multiplicators to satisfy

∑
i Pi = 1)

! we have L̃(P ) =
∑
n lnPin =

∑
iNi lnPi; maximize under the constraint

∑
i Pi = 1:

d

dPi

(
L̃(P )− λ(

∑
i

Pi − 1)

)
!
= 0 ⇒ Ni

Pi
= λ⇒ Pi ∝ Ni

? Based on this result Pi = Ni/N , give the parameters for the AC-only MNL and for the binary
i.i.d. Probit model Logit: Pi/PI = Ni/NI = exp(βi) (notice that I is the reference w/o AC)
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Exercise: simple binomial model with an AC and travel time

Vni = β1δi1 + β2Tni

Choice set Tped = T1 [min] Tbike = T2 [min] # chosen 1 # chosen 2

1 15 30 3 2
2 10 15 2 3
3 20 20 1 4
4 30 25 1 4
5 30 20 0 5
6 60 30 0 5
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I: Graphical solution

Vni = β1δi1 + β2Tni

Logit:

L̃ = −12
β̂1 = −1.3, β̂2 = −0.14,

AC in minutes: − β̂1
β̂2

= −9 min

Probit:

L̃ = −12
β̂1 = −1.1, β̂2 = −0.12,

AC in minutes: − β̂1
β̂2

= −9 min
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II. Numerical solution

I Generally, we have a nonlinear optimization problem.

I For parameter-linear utilities, we know for the MNL that a maximum exists and is
unique.

I Standard methods of nonlinear optimization are possible:
I Newton’s and quasi-Newton method: Fast but may be unstable
I Gradient/steepest descent methods: slow but reliable
I Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Levenberg-Marquardt algorithm

combining gradient and Newton methods. Such methods are used in many software
packages

I genetic algorithms if the objective function landscape is complicated (nonlinear
utilities).
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Special case: estimating the MNL

The special structure of the MNL with parameter-linear utilities, Vni =
∑

m βmXmni

allows for an intuitive formulation of the estimation problem:

The observed and modeled property sums sums of the factors X for a
given parameter m should be the same

XMNL
m = Xdata

m ,∑
n,i

xmni Pni(β̂) =
∑
n,i

xmni yni =
∑
n

xmnin
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Example: four factors, two alternatives
MNL model, Vni = β1Tni + β2Cni + β3giδi1 + β4δi1, g = 0, g = 1:

I X1 = T : Total travel time for the chosen alternatives:

TMNL =
∑
n,i

Pni(β)Tni, T data =
∑
n,i

yniTni =
∑
n

Tnin

I X2 = C: Total money spent by the decision makers:

CMNL =
∑
n,i

Pni(β)Cni, Cdata =
∑
n,i

yniCni =
∑
n

Cnin

I X3 = N
1,

: number of woman choosing alternative 1:

NMNL

1,
=
∑
n

Pn1(β)gn, Ndata

1,
=
∑
n

yn1gn

I X4 = N1: total number of persons choosing alternative 1:

NMNL
1 =

∑
n

Pn1(β), Ndata
1 =

∑
n

yn1
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9.2 Estimation Errors: Variance-Covariance Matrix
Since the log-likelihood is maximized at β̂, we have

∂L̃

∂β
= 0 ⇒ L̃(β) ≈ L̃max +

1

2
∆β T ·H ·∆β, ∆β = β − β̂

with the (negative definite) Hessian Hlm = ∂2L̃(β)
∂βl ∂βm

∣∣∣
β=β̂

Compare L(β) near its maximum with the density f(x) of the general multivariate normal
distribution with variance-covariance matrix Σ:

L(β) = Lmax exp

(
1

2
∆β T ·H ·∆β

)
,

f(x) =
(
(2π)MDetΣ

)−1/2
exp

(
−1

2
x′Σ−1 x

)
Identify ∆β with x, the sought-after variance-covariance matrix V with Σ, and assume the

asymptotic limit (higher than quadratic terms in L̃(β̂) negligible): ⇒

V = Cov(β̂) = E

[(
β − β̂

)(
β − β̂

)′]
≈ −H−1(β̂)
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Fisher’s information matrix

The variance-covariance matrix is related to Fisher’s information matrix I:

I = V−1 = −H , Ilm = − ∂2L̃(β̂)

∂βl ∂βm

I Roughly speaking, information is missing uncertainty, so the higher the main components of
I, the lower the main components of V

I Cramér-Rao inequality: A lower bound for the variance-covariance matrix is the inverse of
Fisher’s information matrix ⇒ The ML estimator is asymptotically efficient

I Comparison with the OLS estimator V OLS = 2σ2H−1SSE of regression models:

I = −H = H SSE/(2σ
2) = X ′X /σ2

The negative Hesse matrix of L̃(β) is proportional to the Hesse matrix of the regression SSE
S(β).
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9.2.1 Example 1 from past lecture:
SP Survey in the Audience WS18/19 (red: bad weather, W = 1)

Choice
Set

Alt. 1:
Ped

Alt. 2:
Bike

Alt. 3:
PT/Car

Alt 1 Alt 2 Alt 3

1 30 min 20 min 20 min+0e 1 3 7

2 30 min 20 min 20 min+2e 2 9 2

3 30 min 20 min 20 min+1e 1 5 7

4 30 min 20 min 30 min+0e 2 9 3

5 50 min 20 min 30 min+0e 0 9 4

6 50 min 30 min 30 min+0e 0 3 9

7 50 min 40 min 30 min+0e 0 2 10

8 180 min 60 min 60 min+2e 0 4 11

9 180 min 40 min 60 min+2e 0 9 6

10 180 min 40 min 60 min+2e 0 1 14

11 12 min 8 min 10 min+0e 3 5 6

12 12 min 8 min 10 min+1e 5 7 2
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Model specification for Model 1 of the past lecture

Vi = β0δi1 + β1δi2
+ β2Ki + β3Ti

β0 = −0.95± 0.37,
β1 = −0.28± 0.24,
β2 = +0.17± 0.19,
β3 = −0.04± 0.02

β0

−β3
= −22.4 min,

β1

−β3
= −6.6 min,

60β3

β2
= −15e/h

AIC=275, BIC=303,
ρ2 = 0.200, ρ̃2 = 0.177
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Likelihood and log-likelihood function for varying cost (β2) and time (β3)
sensitivities

Vi = β0δi1 + β1δi2 + β2K + β3T

Likelihood function
L(β2, β3|β̂0, β̂0)

Log-likelihood function
L̃(β2, β3|β̂0, β̂1)
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Log-likelihood function in parameter space

Vi = β0δi1 + β1δi2 + β2K + β3T + β4Wδi3
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9.2.2 Example 2: RP Survey in the Audience

Distance classes for the trip home to university (cumulated till 2018)

Weather: good

Distance
Class-
center

Choice
Alt. 1:
ped

Choice
Alt. 2:
bike

Choice
Alt. 2:
PT

Choice
Alt. 3:
car

0-1 km 0.5 km 17 16 10 0

1-2 km 1.5 km 9 23 20 2

2-5 km 3.5 km 2 27 55 4

5-10 km 7.5 km 0 7 42 7

10-20 km 12.5 km 0 0 18 7
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Revealed Choice: fit quality

V1 = β1 + β4r,
V2 = β2 + β5r,
V3 = β3 + β6r,
V4 = 0

β1 = 4.1± 0.6,
β2 = 3.6± 0.5,
β3 = 3.0± 0.5,
β4 = −1.43± 0.26,
β5 = −0.48± 0.08,
β6 = −0.14± 0.05
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Revealed Choice: Modal split as a function of distance

V1 = β1 + β4r,
V2 = β2 + β5r,
V3 = β3 + β6r,
V4 = 0

β1 = 4.1± 0.6,
β2 = 3.6± 0.5,
β3 = 3.0± 0.5,
β4 = −1.43± 0.26,
β5 = −0.48± 0.08,
β6 = −0.14± 0.05
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Likelihood and Log-Likelihood as f(β1, β2)

Vi =
∑3

m=1 βmδm,i +
∑3

m=1 βm+3 rδm,i

Likelihoodfunktion
L(β1, β2, β̂3, ...)

Log-Likelihoodfunktion
L̃(β1, β2, β̂3, ...)
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Log-Likelihood: Sections through parameter space

Vi =
∑3
m=1 βmδm,i +

∑3
m=1 βm+3 rδm,i
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