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9.1. Maximum-Likelihood Estimation: the likelihood function

» The maximum-likelihood (ML) estimation is applicable for general stochastic
models where the probabilities depend on a parameter vector 3

» The goal is to maximize the likelihood function L((3), i.e., the probability that the
model predicts all data points (y,,, €,), n =1,...,N:

LB)=P(49:(B)=y1. -, InB) =yn)
where g,, = y(x,,) gives the model estimate for x,,

» For continuous endogenous variables, the likelihood function is given by the
multi-dimensional probability density at the data points:

L(B) = fg,8)..0xB3) (Y15 YUN)

I' The multi-dimensional probability density f(.) is defined such that
dP = fy,, .ox (y)d™y. Keeping dVy small and constant, dP and thus P is
maximized if and only if f(.) is maximized.
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Maximum-likelihood estimation

» The ML method maximizes the likelihood function:

B=arg max L(B)

» Equivalently, and often better, one maximizes the log-likelihood:

B=arg mgxi(ﬂ), L(B) = In L(B)

Since, as a probability or probability density, I > 0 and the log function is defined
and strictly monotonously increasing in this range. Since (i) in this case

x>y flr)> fy)

(ii) the maximum function is based on this inequality relation, the argument of the
maximum remains unchanged.
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Application 1: Regression models

Besides OLS, the ML can also be used to estimate regression models. Does it give the
same result, at least if the statistical GauB-Markow conditions are satisfied?

N

independ al d-N(0, (yn — By)?
€n Independent €n~i. a? n - n
L(B) = }_[lfn(yn 1;[ 27‘(’0‘2 CeXp |:_ 952 ] )
=4 al al 1 n ﬂ n 2
L(B) = nzllnfn(yn) —;{—2(111277“1102) _ {(y 202::: ) H
N 1 /
= —5(ln2w+ln02)—ﬁ(y—X,@) (y—XpB)

Except for the irrelevant additive and multiplicative constants, this is the SSE function of
the OLS method and therefore leads to the same estimator!

I Since the random terms ¢, ~ i.i.dN (0, 02), particularly, they are independent from
each other
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Application 2: Discrete-choice models

> Probability to predict the chosen alternative i,, for a single decision n:

P(Yn:yn> = P(Ynl = Ynl, - an[ :yn])

I
= H [Pm(ﬁ)}ym = Pnin (6)

i=1

(this relies on the exclusivity/completeness of A,, and of independent RUs)

» Probability to predict all the decisions correctly assuming independent decisions:

LB) = P(M1(B) =y, Yn(B) = yn)

N I
= H H [Pnz(ﬁ)]ynz
ML estimation: n=11i=1
N I N
B = argmax L(3 Yni In Ppi(B) = InP,;, (B
gx L(B) nz:l ; (8) 1; (8)
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Question

? Show that, in deriving the main ML result L =
Y n > Yniln Py, the random utilities need not to be un-
correlated between alternatives, only between choices

I Because of the exclusivity/completeness requirement for the
alternatives, exactly one alternative can be chosen per de-
cision so it is enough to maximize the corresponding prob-
ability (which, of course, depends on possible correlations)
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Estimating models with only ACs

If there are no exogenous variables, we are left with just the ACs reflecting that people
prefer certain alternatives over others for unknown reasons:

I—-1
Vni = Z/Bm(smz or Vni :/Bl IfZ#I, VnI =0
m=1

This AC-only model will be the “reference case” when estimating the model quality, e.g.,
by the likelihood-ratio index.

I we have [NJ(P) => . InP, =5 N;lnP; maximize under the constraint >, P; = 1:

d ~ | N,'
, — . = —_— = ) ( /;
i (L(P) /\(Ei P 1)> 0= 5 A= P xN;

Logit: P;/P; = N;/N; = exp(B;) (notice that I is the reference w/o AC)
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Exercise: simple binomial model with an AC and travel time
Vi = B10i1 + BoThi

Choice set || Tpea = T1 [min] | Thike = T2 [min] | # chosen 1 | # chosen 2

1 15 30 3 2

2 10 15 2 3

3 20 20 1 4

4 30 25 1 4

5 30 20 0 5

6 60 30 0 5
Logit InL i.i.d. Probit InL
0 -12
-0.05 14
-0.1 -18

&

-0.15 18
-0.2 -20
-0.25 22
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I: Graphical solution

Vi = B10i1 + BT

Logit
15
Logit:
L=-12
b1 =-1.3, B = —9.14,
AC in minutes: — % = —9min
2

InL
-12

-2

i.i.d. Probit nL
- 12
14
18
-18
-20
. . = -22
15 -1 -0.5 0
By
Probit:
L=-12
/Bl = _1]-7 /82 = _lea
B1 _

AC in minutes: — £ = —9min
B2
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I1. Numerical solution

» Generally, we have a nonlinear optimization problem.
» For parameter-linear utilities, we know for the MNL that a maximum exists and is
unique.
» Standard methods of nonlinear optimization are possible:
> Newton’s and quasi-Newton method: Fast but may be unstable
> Gradient/steepest descent methods: slow but reliable
» Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Levenberg-Marquardt algorithm
combining gradient and Newton methods. Such methods are used in many software

packages
> genetic algorithms if the objective function landscape is complicated (nonlinear

utilities).
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Special case: estimating the MNL

The special structure of the MNL with parameter-linear utilities, V,,; = > BmXmni
allows for an intuitive formulation of the estimation problem:

The observed and modeled property sums sums of the factors X for a
given parameter m should be the same

MNL data
Xm — Xm )

Z Trmni Pri (B) == Tmni Yni = Z Tmnin
n,t n,t n



Econometrics Master's Course: Methods  Chapter 9: Inferential Statistics |: Maximum-Likelihood Estimation 9.1. Maximum-Likelihood Estimation

Example: four factors, two alternatives
MNL mOdeI /BlTnz + /820711 + /8391 i1+ 54511 goﬂ - 0 g? =1

» X, =T: Total travel time for the chosen alternatives:

TMNL Z Pnz Tois Tdata _ Z YniThi = Z Tnin

» X, = C: Total money spent by the decision makers:

CMNL Z Pnz nz7 Cdata = Z ynzan = Z Cnin
n,i n
> X3 = N1 o number of woman choosing alternative 1:

NMNL Z Pnl gn, Ndata Z Yn1Gn

» X, = Nj: total number of persons choosing alternative 1:

MNL § :Pnl ’ data Zynl
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9.2 Estimation Errors: Variance-Covariance Matrix
Since the log-likelihood is maximized at B we have

oL . = 1 5
%:OiL(ﬁ)mLmax"_iA/gTHA/B’ Aﬁ:ﬁ_ﬁ
with the (negative definite) Hessian Hj,, = O°L(p) R
(neg ) m = 35 08m | g_

Compare L(3) near its maximum with the density f(x) of the general multivariate normal
distribution with variance-covariance matrix 3:

L(/@) = Lmaxexp (;AIBT -H Aﬁ) s

2m)MDetsy) exp —lzc’Eflzc
2

=
&
I

Identify A3 with x, the sought-after variance-covariance matrix V with 3, and assume the
asymptotic limit (higher than quadratic terms in L(3) negligible): =

= Cov(B) = {(ﬂ = B) (,6 - B)'] ~—H(3)
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Fisher’s information matrix

The variance-covariance matrix is related to Fisher’s information matrix Z:

_ PPL(B)

I=V'=—-H, I,,=
n 9B 0B

» Roughly speaking, information is missing uncertainty, so the higher the main components of
Z, the lower the main components of V

» Cramér-Rao inequality: A lower bound for the variance-covariance matrix is the inverse of
Fisher’s information matrix = The ML estimator is asymptotically efficient

» Comparison with the OLS estimator V o s = 202H s_le of regression models:
Z = —H =Hsse/(20%) = X'X /o2

The negative Hesse matrix of f/(ﬂ) is proportional to the Hesse matrix of the regression SSE

5(8).
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SP Survey in the Audience WS18/19 (red: bad weather, W = 1)

9.2.1 Example 1 from past lecture:

Choice || Alt. 1: | Alt. 2: Alt. 3:
Set Ped Bike PT/Car Altl | Alt2 | Alt 3
1 30 min 20min | 20 min+0€ 1 3 7
2 30 min 20min | 20 min+2€ 2 9 2
3 30 min 20min | 20 min+1€ 1 5 7
4 30 min 20min | 30 min+0€ 2 9 3
5 50 min 20 min | 30 min+0€ 0 9 4
6 50 min 30min | 30 min+0€ 0 3 9
7 50 min 40 min | 30 min+0€ 0 2 10
8 || 180 min 60 min | 60 min4+2€ 0 4 11
9 || 180min | 40min | 60 min+2€ 0 9 6
10 || 180 min 40 min | 60 min+2€ 0 1 14
11 12 min 8 min 10 min+0€ 3 5 6
12 12 min 8 min 10 min+1€ 5 7 2
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Model specification for Model 1 of the past lecture

I I
: § g Model Ped +  BKi+ BsT;
1 ; ; ; Data Ped+Bike u] |
; ; ' Model Ped-+Bike
. | | f | '
3 :  om f i By =—0.2840.24,
% : : : By = 40.17 £ 0.19,
= B3 = —0.04 4 0.02
S5 = —22.4min,
L
10 12
AIC=275, BIC=303, Choice Set

p? =0.200, 5% =0.177



B3 (Time sensitivity)

-0.06 *

-0.08 |-
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Likelihood and log-likelihood function for varying cost (/3;) and time (/33)
sensitivities

Vi = Bobi1 + Bi6i2 + B2 K + 3T

-0.04 A

-04 -0.2 0 0.2 04 0.6
B2 (Cost sensitivity)

Likelihood function

L(Ba, B3| 5o, Bo)

1

0.8

0.6

0.4

0.2

B3 (Time sensitivity)

-0.02

-0.04

-0.06

-0.08

-0.4 -0.2 0 0.2 0.4 0.6

B2 (Cost sensitivity)

Log-likelihood function

L(Ba, B3| 5o, 1)

-145

-150

-155

-160
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Log-likelihood function in parameter space

Bl |32

Vi = Bodi1 + B10s2 +|Bo K + BT + B4W i3

B s 4 o5 i 08 08 04 02 0 02 04
R fAR Ril(r-‘— PTiCan
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9.2.2 Example 2: RP Survey in the Audience

Distance classes for the trip home to university (cumulated till 2018)

Weather: good

. Class. Choice | Choice | Choice | Choice
Distance center Alt. 1: Alt. 2: | Alt. 2: | Alt. 3:
ped bike PT car
0-1km 0.5km 17 16 10 0
1-2km 1.5km 9 23 20 2
2-5km 3.5km 2 27 55 4
5-10 km 7.5km 0 7 42 7
10-20 km 12.5km 0 0 18 7




Relative frequency
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1.2

Revealed Choice: fit quality

| |
Dataped 0O

DataRad A
i DataPT =
- Model Rad ——

~ Model PT —— |

.L.
=)
4

15 2 25 3 35
Person group

Vi = B1+ Bar,
‘/2 = 62 + 657'3
‘/3 = 53 + B(STu
Vi=0

£B1=4.14+0.6,
B = 3.6 +0.5,
B3 =3.0£0.5,

By = —1.43 4 0.26,
Bs = —0.48 + 0.08,
Bs = —0.14 + 0.05



Relative frequency
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14

1.2

Revealed Choice: Modal split as a function of distance

" Ped+Rad+OEV ——

I I
Ped ——

Ped+Rad

Dataped 0O

4 6 8
Distance [km]

10 12 14 16

Vi = B1+ Bar,
‘/2 = 62 + 657'3
‘/3 = 53 + BGTu
Vi=0

£B1=4.14+0.6,
B = 3.6 +0.5,
B3 =3.0£0.5,

By = —1.43 4 0.26,
Bs = —0.48 + 0.08,
Bs = —0.14 + 0.05
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Likelihood and Log-Likelihood as f(/;, 32)

Vi= Z?n:1 BmOm,i + 21:1 Bm+3 TOm,i

5 T - T T T T 14 1 5 =1 | —
H H H H H H . : : H H . -245
45 — : : : : : T 08 45 - : : —
8 4l - E 4+ _I ' -250
2 : %t e
T 35 |- - T 35 [ -
2 : 04 2 255
& 3 - 3 8r _
D5 | h e ] 02 25 | | -260
Lo Ul N Y Y R TR N
25 3 35 4 45 5 G55 26 3 35 4 45 5 55
B+ (AC ped - car) B+ (AC ped - car)
Likelihoodfunktion Log-Likelihoodfunktion

L(/817627B37"') E(ﬁl?ﬁ?aé?ﬂ"')
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