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> The classic frequentist’s approach calculates the probability that
the test function T is further away from Hj, (in the extreme
range Fy.ta) than the data realisation provided Hj is marginally
true:
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5.1 Introduction: Frequentist vs. Bayesian inference

The classic frequentist’s approach calculates the probability that
the test function T is further away from Hj, (in the extreme
range Fy.ta) than the data realisation provided Hj is marginally
true:
p= P(T € Edata|H5) > P(T € Edata‘HO)

The Bayesian inference tries to caculate what is actually
interesting: The probability of Hy given the data.
If the unconditional or a-priori probabilities were known, this is
easy using Bayes’ theorem (abbreviating T € Fyata as Fqata)
P(Edata’HO)P(HO) < P(HO)

P(Edata) =P P(Edata)
For real-valued parameters, this obviously makes only sense for

interval null hypotheses since, for a point null hypothesis, we
have exactly P(Hy|F4ata) = P(Hp) = 0.

P(H0|Edata) -
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» Principle: Update the a-priori probability P(Hp) of some event
Hy (in particular, a null hypothesis) based on an observation B,
eg, B:B=borB:3e[b—5/2b+ /2] with some small §
> Example: Hy: “tomorrow is nice weather”
» P(H,): a-priori probability before hearing the weather forecast (or
the general probability based on climate tables)
> B: tomorrow’s weather forecast B € {will be nice, not nice}
» P(Hy|B): a-posteriori probability after hearing the forecast
» Relation to classical frequentist’s statistics: Known are some
observation B and conditional probability P(B|Hj) that often
can be expressed in terms of p. Want P(Hy|B)
» Four scaling possibilities
(i) discrete 3 and 3 (e.g., Covid-19 test)
i) discrete 3 and continuous 3 (e.g., map-matching)

(iii) continuous (3, discrete observation (Hj rejected or not)

(iv) continuous sought-after quantity 8 and continuous observation B
(e.g., regression models)
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Textbook case: binary variables € {“true”, “false” } (generalisations easy):
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for Discrete Quantities and Observations

Textbook case: binary variables € {“true”, “false” } (generalisations easy):
Hy:fB=true, Hy:pB=false, B:j3=true; B:J = false
)P
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5.3 Bayesian Inference
for Discrete Quantities and Observations

Textbook case: binary variables € {“true”, “false” } (generalisations easy):
Hy:fB=true, Hy:pB=false, B:j3=true; B:J = false
)P

P(B|Hy)P(Hy)

P(Ho|B) = P(B)
Example: Covid-19 tests
» Hy: person is infected; B: person is tested positive
> Known:
e Sensitivity P(B|Ho) =95% P(B|Ho) =5%
e Specificity P(B|Ho) = 97%, P(B|Ho)=3%
e Incidence P(Hy) =5%
> Bayes:
o Test incidence: P(B) = P(B|Ho)P(Ho) + P(B|Ho)P(Ho) = 7.6%
e Hy after test positive: P(Hy|B) = P(B|Ho)P(Ho)/P(B) =625%
e Hj after test negative: P(Ho|B) = P(B|Ho)P(Ho)/P(B)=0.27%
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» Discrete quantity/parameter 3 with the prior distribution

P(B=p5j)=pj, >,;pj=1
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5.4 Bayesian Inference
for Discrete Quantities and Continuous Observations

» Discrete quantity/parameter 3 with the prior distribution
P(B=8;)=pj; >,pi=1
» Continuous measurement B with a given distribution of density

9B | B=p8;)=F(B-B)
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» Assume Hj : f = 3}, with 3;, € {5;} and the observation B:
B elb—0/2,b+ 6/2] with arbitrarily small §:
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5.4 Bayesian Inference
for Discrete Quantities and Continuous Observations

Discrete quantity/parameter 3 with the prior distribution
P(B=p5j)=pj, >,;pj=1
Continuous measurement B with a given distribution of density
9(B | 8=8;)=1B~8)

I density of estimation error
Assume Hy : § = Bj, with B;, € {8;} and the observation B:
B elb—0/2,b+ 6/2] with arbitrarily small §:
Bayes: P(Hy) = pj,, P(B|Hy) =0f(b— Bj,), and
P(B) =63 ;pjf(b—5;)

5.4 Discrete Quantities, Continuous Observations
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5.4 Bayesian Inference
for Discrete Quantities and Continuous Observations

» Discrete quantity/parameter 3 with the prior distribution
P(B=p5j)=pj, >,;pj=1

» Continuous measurement B with a given distribution of density
9(B | 8=8;)=1B~8)

I density of estimation error

» Assume Hj : f = 3}, with 3;, € {5;} and the observation B:
B elb—0/2,b+ 6/2] with arbitrarily small §:

» Bayes: P(Hy) = pj,, P(B|Hy)=4f(b— pj,), and
P(B) =63 ;pjf(b—5;)

P(Hy)P(B|Hy) _ pjof(b_ﬁjo)
P(B) > pif(b—B5j)

=  P(Ho|3=0b)=
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Example: Map matching
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Map matching II

True vehicle position:

_J 0 freeway
Y= d=50m parallel road

0.9
0.8
0.7
0.6
05

A posteriori probability P(H;|hat(y))

03 | Stddev of estimation error ;: o
o/d=0.2
02 M 6/d-03 ——
01 Ho/d=0.5 ——
o/d=1.0 ——
0 I | |
0 0.2 0.4 0.6 0.8 1

GPS measurement hat(y)/d (0: freeway, 1: parallel road)
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Map matching II

True vehicle position:
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Map matching II

True vehicle position:

_J 0 freeway
Y= d=50m parallel road

0.9

0.8
Lateral GPS measurement:

-~ N(0,0%) freeway
Y N(d,o*) road

0.7

0.6
05

A posteriori probability P(H;|hat(y))

0.4 o Measured:
0.3 |_Stddev of estimation error : o y=30m, c =10m
o/d=0.2
02 M g/d03 ——
01 Ho/d=0.5 ——
o/d=1.0 ——
0 I | |
0 0.2 04 0.6 0.8 1

GPS measurement hat(y)/d (0: freeway, 1: parallel road)
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A posteriori probability P(H;|hat(y))

0.9
0.8
0.7
0.6
05
04
0.3

0.2 H
0.1 H

Map matching II

| Stddev of estimation error ;: o
o/d=0.2
o/d=0.3 ——
o/d=0.5 ——
o/d=1.0 ——
T ! I
0 0.2 0.4 0.6 0.8 1

GPS measurement hat(y)/d (0: freeway, 1: parallel road)

True vehicle position:

_J 0 freeway
Y= d=50m parallel road

Lateral GPS measurement:

-~ N(0,0%) freeway
Y N(d,o*) road

Measured:
y=30m, 0 =10m

Read from graphics:

d
= P(Ho|j) = 0.23

=> you are on the parallel
road with a probability of 77 %
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5.5 Bayesian Inference
for Continuous Quantities and Measurements

» The quantity 8 has the a-priori distribution density h(5)

» Unlike discrete quantities/parameters, Hy needs to be an interval

instead of a point = P(Hp) and P(B|H,) are integrals over
the values of Hy



Econometrics Master's Course: Methods 5. Bayesian Inference

5.5 Continuous Quantities and Measurements

5.5 Bayesian Inference
for Continuous Quantities and Measurements

» The quantity 8 has the a-priori distribution density h(5)

» Unlike discrete quantities/parameters, Hy needs to be an interval

instead of a point = P(Hp) and P(B|H,) are integrals over
the values of Hy

Relation of Bayesian inference to the p-value and the power function

Probability for Hy based on measurements lying in the extreme region of a
given measurement (B = Fyata):
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5.5 Bayesian Inference
for Continuous Quantities and Measurements

» The quantity 8 has the a-priori distribution density h(5)

» Unlike discrete quantities/parameters, Hy needs to be an interval

instead of a point = P(Hp) and P(B|H,) are integrals over
the values of Hy

Relation of Bayesian inference to the p-value and the power function

Probability for Hy based on measurements lying in the extreme region of a
given measurement (B = Fyata):

P(E, Hy)P(H,
P(Ho|Edata) - ( d;a(EdOt))( 0)
ata

5.5 Continuous Quantities and Measurements
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5.5 Bayesian Inference
for Continuous Quantities and Measurements

» The quantity 8 has the a-priori distribution density h(5)

» Unlike discrete quantities/parameters, Hy needs to be an interval

instead of a point = P(Hp) and P(B|H,) are integrals over
the values of Hy

Relation of Bayesian inference to the p-value and the power function

Probability for Hy based on measurements lying in the extreme region of a
given measurement (B = Fyata):

P(E, Hy)P(H,
P(Hy|Edata) — ( d;?Edot))< 0)
ata

P(HO)= [y 1y M(B) A(B)  [ge g, P(Edaral B)1(5) df
- Jser P(Eaxs H)R(B) 4B

5.5 Continuous Quantities and Measurements
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5.5 Bayesian Inference
for Continuous Quantities and Measurements

» The quantity 8 has the a-priori distribution density h(5)

» Unlike discrete quantities/parameters, Hy needs to be an interval
instead of a point = P(Hy) and P(B|H,) are integrals over
the values of Hy

Relation of Bayesian inference to the p-value and the power function
Probability for Hy based on measurements lying in the extreme region of a
given measurement (B = Fyata):

P(Edsea| Ho) P(Hy)
P(Eqata)

P(HO)= [y 1y M(B) A(B)  [ge g, P(Edaral B)1(5) df

B Jsem P (Edaa| B)R(B) dB

P(HO|Edata) =

P(Egata|B) is related to the p-value P(Egata|8o € H) and also to the power
function 7, (8) = P(R4|B) [Ra= rejection region at q]
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Inference for a given measurement

Probability for Hy based on a given realisation (measurement)
B € B=1[b—3/2,b+ /2] with arbitrarily small ¢:

» 3 has the a-priori distribution density h(3)

> The estimation error 3 — 3 is independent from /3 (as in the OLS
estimator under GauB-Markow conditions), so /3 has the conditional

density g(b|B) = f(b— B)
P(B|Hy)P(Hy)
P(B)
P(Ho)= [1(8) d(8)  Jgen, 0 9CIB)R(B) dB
Jyer® 90I1B)h() 4B

P(Hy|B) =
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Inference for a given measurement
Probability for Hy based on a given realisation (measurement)
B € B=1[b—3/2,b+ /2] with arbitrarily small ¢:
» 3 has the a-priori distribution density h(3)

> The estimation error 3 — 3 is independent from /3 (as in the OLS
estimator under GauB-Markow conditions), so /3 has the conditional

density g(b|3) = f(b— B)

P(Hy|B) - P(B|Ho)P(Ho)

P(B)
P(Ho)= [1(8) d(8)  Jgen, 0 9CIB)R(B) dB
Ton® 90IB)R(B) 45
L s o Ben =10 15

Jsem f(0— B)R(B) dB

Notice that the denominator is just the convolution [f * h] at B =0
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Example: Gaussian Prior Distribution and Observations
> Prior § ~ N(0,03) (maximum ignorance), so 3/az ~ N(0,1)

> Unbiased estimator 3 ~ N(8,02), so (b— 8)/og ~ N(0,1)

» Null hypothesis Hy: 3 < Bo, so fHo ds :ffgo ds
> Bayesian inference for Hy under the observation 3 = b (long calc.):
2
. _ o 00
P(Ho|B) = @ (50_'“> . p= b%, o=
o 95 T % o+ o}
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Example: Gaussian Prior Distribution and Observations
> Prior § ~ N(0,03) (maximum ignorance), so 3/az ~ N(0,1)

> Unbiased estimator 3 ~ N(8,02), so (b— 8)/og ~ N(0,1)

» Null hypothesis Hy: 3 < Bo, so fHo ds :ffgo ds

> Bayesian inference for Hy under the observation 3 = b (long calc.):

5 Bo—p o 030y
PHylB) =@ — ], p=b—5—35, 0=—F—=
o 95 T % o+ o}

» When expressing the observation in terms of the p value,
b= By + @ 1(1—p) and By in terms of P(Hy),
Bo = 03P 1 (P(Hy)) , this result is valid for any simple
intervall null hypothesis for a single parameter (3, any a-priori
expectation F(3), and any Hy boundary value (3
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Example: Gaussian Prior Distribution and Observations
> Prior § ~ N(0,03) (maximum ignorance), so 3/az ~ N(0,1)

> Unbiased estimator 3 ~ N(8,02), so (b— 8)/og ~ N(0,1)

» Null hypothesis Hy: 3 < Bo, so fHo ds :ffgo ds

> Bayesian inference for Hy under the observation 3 = b (long calc.):

5 Bo—p o 030y
PHylB) =@ — ], p=b—5—35, 0=—F—=
o 95 T % o+ o}

» When expressing the observation in terms of the p value,
b= By + @ 1(1—p) and By in terms of P(Hy),
Bo = 03P 1 (P(Hy)) , this result is valid for any simple
intervall null hypothesis for a single parameter (3, any a-priori
expectation F(3), and any Hy boundary value (3

> If 0j < 07 and Hy is an interval, we have P(Hy|B) = p
= “ressurrection” of the p-value!
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I We assume known variance, so T' = (3 — Bo)/op ~ N(0,1). For Hyo: 8 < 3y we
have

p = 1-— (I)(tdata)

- 1- (ﬂ)
b
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I We assume known variance, so T' = (3 — Bo)/op ~ N(0,1). For Hyo: 8 < 3y we
have

p = 1- (I)(tdata)

= 17(1)<7b7‘do>
Jp
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b = Bo+o,® (1 —p)
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I We assume known variance, so T' = (3 — Bo)/op ~ N(0,1). For Hyo: 8 < 3y we
have

p = 1- (I)(tdata)

= 17(1)<7b7‘do>
Jp
& ([)—3()) _ lfp
Op

)

Ip

b = Bo+o,® (1 —p)
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5. Bayesian Inference

Questions

Show that, on the previous slide, b

30 + op® (1 — p)

We assume known variance, so T = (3 — Bo)/op ~ N(0,1). For Hyo: B < 3o we

1- (I)(tdata)

1—@ (ﬂ
Op

I—p

7' (1-p)

Bo +0p® "1 (1 - p)

? Show that, on the previous slide, 5y = o3® 1 (P(Hy))

I We have P(Ho) = P(8 < o) = ® (

20, s0 @1 (P(Ho)) = fo/op.

5.5 Continuous Quantities and Measurements



5. Bayesian Inference . s and Measurements

Questions 11



5. Bayesian Inference . s and Measurements

Questions 11



Econometrics Master's Course: Methods 5. Bayesian Inference 5.5 Continuous Quantities and Measurements

Questions 11

I Answer to the first question, og > oy

2
we have I3
@ __B



Econometrics Master's Course: Methods 5. Bayesian Inference

Questions 11

I Answer to the first question, og > oy

2
we have 93 1
I

5.5 Continuous Quantities and Measurements



Econometrics Master's Course: Methods 5. Bayesian Inference

Questions 11

Answer to the first question, og > oy

2
we have 93 1
I

o = 0501,/,/0?3 + o2
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2
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o = Jﬁab/,/ag-‘rag = Jb,/l—ﬁ-ag/az—nfb,



£ TECHNISCHE
O g Econometrics Master's Course: Methods 5. Bayesian Inference 5.5 Continuous Quantities and Measurements

Questions 11

I Answer to the first question, og > oy

2
we have 93 1
I

o = Jﬁab/,/ag-‘rag = Jb,/l—ﬁ-ag/az—nfb,

R )
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Questions 11

I Answer to the first question, og > oy

o2 1
we have L b B —b

o = Jﬁab/,/ag-‘rag = Jb,/l—ﬁ-ag/az—nfb,

5 —b — b in terms o —op®~1(1 —
P(Holf) — @ (LO ) Fo —bintemsoly g (7‘”’ ( p))
Oy Op
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Questions 11

Answer to the first question, og > oy

we have

P(HolB)

—

O'2 1
By

2 2
crﬁ+crb 1+

0501,/,/0?3 +O’§ = opy/1 +0§/J[23 — oy,

® (LO _b) Bo —bintermsof p 4 (M)

Ty Jp

® (—e7'(1-p))
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Questions 11

I Answer to the first question, og > oy

2
we have 93 1
nw = 5} n 5 = o2 —}b,
O'B O'b 1_"_78
75

o = Jﬁab/,/ag-‘rag = Jb,/l—ﬁ-ag/az—nfb,

P(Ho‘é) N (I)(ﬂo—b) ﬁo—bin:termsofp (I)(—O'bcb_l(l—p))

Ty Jp

= (-7 '1-p) "E" @ (+27'(p)
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Questions 11

I Answer to the first question, og > oy

2
we have 93 1
Boo= 2, 2 ol
Bro% 14+ %
B
o = Jﬁab/,/ag-‘rag = Jb,/1+ag/a2 — oy,
P(Ho‘é) N (I)(ﬂo—b) ﬁo—bin:termsofp (I)( O'bCI> )
oy
_ ‘I)(fq)_l(lfp)) symm CD(+<D 1( )) defquantllegk/
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Questions 11

I Answer to the first question, og > oy

2
we have g 1
woo= 3 B 3 —b — — b,
Bro% 14+ %
75
o = Jﬁab/,/ag-‘rag = Jb,/1+0§/a2 — oy,
P(Ho‘é) N (I)(ﬂo—b) ﬂo—bin:termsofp (I)( O’b<1> )
Op
_ ‘I)(fq)_l(lfp)) symm CD(+<D 1( )) defquantllegk/

! Answer to the second question, og < op:
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Questions 11

Answer to the first question, og > oy

2
we have I3 1
nw = 5} 5 = o2 —}b,
%t 14 %
B
o = Jﬁab/,/ag-‘rag = oy 1+O’§/0’2—>O'b,
P(Ho‘é) N (I)(ﬂo—b) ﬂo—bin:termsofp (I)( O’b<1> )
Op
_ ‘I)(fq)_l(lfp)) symm CD(+<D 1( )) defquantllegk/

Answer to the second question, og < oy:

we have pp — 0, 0 — opg, P(Ho\B) = ®(B/0og) = P(Ho) v«
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Bayesian inference for a Gaussian prior distribution 1:
P(HO) = 0.5

1 T T T
; P(Hg)=0.50

I
Op/0p=0.1 ———
Op/op=0.5 ——
: : Op/op=1 ———
08 |- : : oplop=2 —— [
Op/0p=10

: : stddev of trug P values: Op
0.6 b e SEACEV: of the: estimator: Oy

Bayes a-posteriori probability P(Hy|data)
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pvalue
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Bayesian inference for a Gaussian prior distribution 1:
P(HO) = 0.5

1 T T \ I » Past investigation:
: Op/0p=0.1 ———
P(Hp)=0.50 oylop=0.5 —— B=(020£3)%
: : Op/op=1 ———
0.8 - : : oplop=2 —— [
cbqu:m

: : stddev of trug P values: Op
0.6 b e SEACEV: of the: estimator: Oy

Bayes a-posteriori probability P(Hy|data)
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pvalue
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Bayesian inference for a Gaussian prior distribution 1:
P(HO) = 0.5

1 T T T

1 » Past investigation:
P (Hg)=0.50 vop=0-1

ap/op=0.5 —— B = (20 + 3) %

: : op/op=1 ——— . . .
08 | : . U:OE:Q —H > New investigation:

03p=10 B=(26+3)%

: : stddev of trug P values: Op
0.6 b e SEACEV: of the: estimator: Oy

Bayes a-posteriori probability P(Hy|data)

o L2 ; ; | ;

0 0.1 02 0.3 0.4 05
pvalue
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stddev of true P values: Op
...stddev of the estimator; oy, |

Bayes a-posteriori probability P(Hy|data)

05

Bayesian inference for a Gaussian prior distribution 1:
P(HO) = 0.5

» Past investigation:

B=(20+3)%

» New investigation:

B=(26+3)%

Has biking increased?
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Bayesian inference for a Gaussian prior distribution 1:
P(HO) = 0.5

1 T T \ » Past investigation:

I
Op/0p=0.1 ———

P(Hp)=0.50 oylop=0.5 B=(020£3)%
08 | : : 55221 —H > New investigation:
Oy/Tp=10 B=(26+3)%

: i stddevcftruana\ues:cg . .
0.6 b stddlev of the: estimator: op ] Has biking increased?

» Frequentist:
Hy : ﬂ < 20%,

p=®(-2) =0.0227

Bayes a-posteriori probability P(Hy|data)
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stddev of true P values: Op
...stddev of the estimator; oy, |

Bayes a-posteriori probability P(Hy|data)

05

Bayesian inference for a Gaussian prior distribution 1:
P(HO) = 0.5
Example: Bike modal split 5

» Past investigation:

B=(020£3)%
> New investigation:
B=(26+3)%

Has biking increased?

» Frequentist:
Hy: 8 <20%,
p=®(-2) =0.0227
» Bayesian:
og =0y = 3%,
p = 0.0227, P(Ho) = 0.5
read from graphics:
P(Hy|B) = 8% = no!
(a difference test would
give the same)
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Bayesian inference for a Gaussian prior distribution 2:
P(H,) = 0.9987

> o, K og
= P(Ho|B) =~ p
= precise a-posteri
information changes
much.

 P(Hg)=0.9987
stddev of trug B values: o
stddev of the: estimator: 0},

0.4

Op/Op=0.1
O/0p=0.5 ——— H
oplop=1 ——
Op/op=2 ———
crbt‘czgzlo

0.2

Bayes a-posteriori probability P(Hy|data)
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Bayesian inference for a Gaussian prior distribution 2:
P(H,) = 0.9987

> o K o3
El = P(Ho|B) ~p
g ) .
: :> preasg a-posteri
% information changes
5 much.
8
‘g‘ PHp=0.9887| P o > 0
B 04 stddev of trug B values: og T 2\ A
§_ stddev of the estimator: OE = P(H0|ﬂ) ~ P(HO)
@ = fuzzy a-posteri data
a Op/Op=0.1 . )
2 o2 - |owlop=0.5 —— H essentially give no
* ov/op=1 information = a-priori
Op/op=2 ——— o p
: : ‘ ar/op=10 probability nearly

0 0.1 0.2 0.3 0.4 0.5 unchanged.
pvalue
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Bayesian inference for a Gaussian prior distribution 3:

P(H,) = 0.16

I
Op/0p=0.1 ———
Op/op=0.5 ——
: Op/op=1 ———
= : : oplop=2 ——

P(Ho)=0.16

Op/0p=10

: : stddev of true P values: Op
b SHCCleV Of the: estimator: O

0 0.1 02 0.3 0.4

pvalue

05

Again, new data with
o, < og gives much
a-posteriori information
(at least if p is sig-
nificantly different from
P(Hy)),



Bayes a-posteriori probability P(Hy|data)

0.8

0.6

0.4

0.2

Econometrics Master's Course: Methods 5. Bayesian Inference 5.5 Continuous Quantities and Measurements

Bayesian inference for a Gaussian prior distribution 3:

P(H,) = 0.16
T T T b{ I X
. /op=01 ——
P(Hp)=0.16 DO . .
_ - "b;‘a‘)j Again, new data with
B : : Op/op=2 —— o, < og gives much
S a-posteriori information
: H stddev of trug P values: Op . ) . .
Lo stddev of the estimator; oy _| (at least if p is sig-
- nificantly different from
P(Hy)),

New data with o, >
op are tantamount to
essentially no new infor-

mation.

0 0.1 02 0.3 0.4 05

pvalue
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5.6 Conclusion

» For discrete variables and measurements, we have the simple
Bayes's calculations from elementary statistics — probability tree

P Discrete variables and continuous measurements:
e |f the measuring uncertainty is larger than the distance between
possible discrete true values, then the a-priori probability matters
e If the uncertainty is much smaller, then the closest distance to the
measurement matters
e The p value is completely mislading, even for bimodal continuous
variables (vehicle not exactly in the middle of the right lane)

» Continuous variables and measurements:

e The p value only gives a good estimate for the posterior
probability P(Hy|B) if (i) the prior distribution is unimodal, (ii)
the measuring uncertainty is much smaller than the prior standard
deviation, (iii) we have an interval null hypothesis

e |f the measuring uncertainty is much larger than the prior spread,
the measurement hardly changes P(Hy)
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