
Econometrics Master’s Course: Methods 3. Classical Inferential Statistics

3.1 Expectation and Covariance Matrix
of the Ordinary Least Squares (OLS)
Estimator

3.2 Confidence Intervals

Lecture 03: Classical Inferential Statistics I:

Basics and Confidence Intervals



Econometrics Master’s Course: Methods 3. Classical Inferential Statistics 3.1. OLS Expectation and Covariance

3.1. Ordinary Least Squares (OLS) Estimator:
Expectation and Covariance

I Only stochasticity: residual errors ε according to y = Xβ + ε

I The OLS estimator is linear in y:

β̂ =
(
X ′X

)−1
X ′y

=
(
X ′X

)−1
X ′(Xβ + ε)

= β +
(
X ′X

)−1
X ′ε

Expectation value

E(β̂) = E(β) + (X ′X )
−1

X ′E(ε) = β

The OLS estimator of parameter-linear models is un-
biased under the mild condition E(ε) = 0 for all the
data points
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OLS estimator: variances and covariances

I Gauß-Markow conditions → ε ∼ i.i.dN(0, σ2)→ β̂ is normal
distributed

I In this case, the complete error characteristics are specified by
the expectation value and the variance-covariance matrix V β̂

V β̂

def
= E

(
(β̂ − β)(β̂ − β)′

)
[insert β̂ = β +

(
X ′X

)−1
X ′ε →] = E

(
(X ′X )−1X ′ε

(
(X ′X )−1X ′ε

)′)
[transpose and inversion rules →] = E

(
(X ′X )−1X ′εε′X (X ′X )−1

)
[E(.) acts only on ε →] = (X ′X )−1X ′E(εε′)X (X ′X )−1

[Gauß-Markow →] = (X ′X )−1X ′σ2εX (X ′X )−1

[def inverse matrix →] = σ2ε (X
′X )−1

The variance-covariance matrix depends only on the values of the
exogenous factors!
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Results

I Ordinary least squares (OLS) estimator:

β̂ = (X ′X )
−1

X ′y

I Variance-Covariance matrix of the estimation errors (provided the
errors are i.i.d.) can be written in terms of the Hesse matrix H of the
objective function SSE:

V β̂ = E
(

(β̂ − β)(β̂ − β)′
)

= σ2 (X ′X )
−1

= 2σ2H−1,

Hjk = ∂2S
∂βj ∂βk

∣∣∣
β=β̂

= 2(X ′X )jk

I Variances of estimation errors: V (β̂j) = Vjj

I Correlation of estimation errors: Corr(β̂j , β̂k) =
Vjk√
VjjVkk

I Distribution of the normalized estimation errors:
β̂j−βj√
Vjj

∼ N(0, 1)
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Estimation of the residual variance
The above cannot be applied directly since the residual variance σ2 is
unknown and must be estimated by the minimum SSE S(β̂):

σ̂2 =
1

n− J − 1

∑
i

(yi − ŷ(xi))
2 =

S(β̂)

n− J − 1

Under the Gauß-Markow assumptions, this can be expressed as the
sum of squared Gaussians as follows (derivation for the experts):

(n− J − 1)σ̂2 = (ŷ − y)
′
(ŷ − y)

= (X β̂ − y)′(X β̂ − y)

= (X β̂)′(X β̂)− (Xβ)′y − y′(Xβ) + y′y

With following rule for scalar products: a′b = b′a it follows that the two
middle terms are equal. Replacing β̂ = (X ′X )−1X ′y we see that,
interestingly, the first term is the negative of each of the two middle terms
resulting in

(n− J − 1)σ̂2 = y′
(
1 − X (X ′X )−1X ′

)
y
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Estimation of the residual variance (ctned)

Finally, we replace the observed endogeneous data vector y by the
model y = Xβ + ε Notice: the true and, according to the Gauß-Markow

assumptions, immutable parameter vector β is used here!:

(n− J − 1)σ̂2 = (Xβ + ε)′
(
1 − X (X ′X )−1X ′

)
(Xβ + ε)

= ε′(1 − X (X ′X )−1X ′)ε

+ 2(Xβ)′(1 − X (X ′X )−1X ′)ε+ β′X ′(1 − X (X ′X )−1X ′)Xβ

After doing the simplification, we realize that the second and third
term are each equal to zero, so we have the final result

(n− J − 1)σ̂2 = ε′(1 − X (X ′X )−1X ′)ε

With the Gauß-Markow-assumptions, this is proportional to a sum of
(n− J − 1) squared Gaussians, i.e., a χ2(n− J − 1) distributed
random variable
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Results if the variance needs to be estimated

I Estimated variance-covariance matrix:

V̂ β̂ = 2σ̂2H−1 = σ̂2
(
X ′X

)−1
I The normalized approximate estimation errors are student-t

distributed (a Gaussian in the numerator and the square root of a
χ2 distributed random variable in the denominator):

β̂j − βj√
V̂jj

∼ T (n− 1− J)
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Multivariate distribution function of β̂
The distribution of the errors ∆β̂ = β̂ − β obeys a multivariate normal
distribution:

fβ̂(∆β̂) ∝ exp

[
−1

2
∆β̂
′

V−1 ∆β̂

]
= exp

[
−∆β̂

′
X ′X ∆β̂

2σ2
ε

]
.

Relation to the maximum-likelihood-method (→ Lecture 07:)

Expand the SSE S(β) around β̂ to second order:

S(β)− S(β̂) ≈ 1

2
∆β̂
′

H ∆β̂ = ∆β̂
′

X ′X ∆β̂

⇒ fβ̂(∆β̂) ∝ exp

[
−S(β)− S(β̂)

2σ2
ε

]

and with the estimated residual variance σ̂2
ε = S(β̂)/(n− J − 1)

f̂β̂(β) ∝ exp

[
− (n− J − 1)

2

(
S(β)

S(β̂)
− 1

)]
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)]
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Example of correlated errors: modeling the demand for hotel
rooms

I The example of Lecture 02:

y = β0 + β1x1 + β2x2 + ε

I Exogenous factors: x0 = 1, x1: proxy for
quality [# stars]; x2: price [e/night].

I Endogenous variable: booking rate [%]

I The demand is positively correlated with
both the quality and the price
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Residual errors for fitted parameters
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Effect of mis-fit parameters I: small effect if β1 and β2 have
opposite misfits
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Effect of mis-fit parameters II: small effect if β1 and β2 have
opposite misfits
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Effect of mis-fit parameters III: large effect if β1 and β2 have
both positive misfits
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Effect of mis-fit parameters IV: large effect if β1 and β2 have
both negative misfits
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All this results in a negative correlation
between the estimation errors for β1 and β2
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Special case 1: No exogenous variables

I Model: y = β0 + ε := µ+ ε

I System matrix: X = (1, 1, ..., 1)′

I OLS estimator:

(X ′X )
−1

=
1

n
, X ′y =

∑
i

yi = nȳ,

β̂0 = µ̂ = (X ′X )
−1

X ′y = ȳ

I Variance: V00 = V (µ̂) = σ2 (X ′X )
−1

= σ2

n , V̂00 = σ̂2

n

I Distribution of the estimator (if ε ∼ i.i.dN(µ, σ2))

β̂0 − β0√
V00

=
ȳ − µ
σ

√
n ∼ N(0, 1),

β̂0 − β0√
V̂00

=
ȳ − µ
σ̂

√
n ∼ T (n− 1)
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ȳ − µ
σ̂

√
n ∼ T (n− 1)



Econometrics Master’s Course: Methods 3. Classical Inferential Statistics 3.1. OLS Expectation and Covariance

Special case 2: Simple linear regression

I Model (with x1 = x): y = β0 + β1x+ ε

I System matrix:

X =

 1 x1
...

...
1 xn

 , X ′X =

(
n nx̄
nx̄

∑
x2i

)

I OLS estimator (with s2x = 1/n(
∑
x2i − nx̄)):

(
X ′X

)−1
=

1

ns2x

( ∑
x2i
n −x̄
−x̄ 1

)
, X ′y =

(
nȳ∑
xiyi

)

β̂1 =

(
− x̄

ns2x
,

1

ns2x

)(
nȳ∑
xiyi

)
=

∑
i xiyi − nx̄ȳ∑
x2i − nx̄

=
sxy
s2x
,

β̂0 = ȳ − β̂1x̄
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Simple linear regression (ctnd)

I Variance-covariance matrix (assuming w/o loss of generality
x̄ = 0):

V (β̂) = σ2
(
X ′X

)−1
= σ2

(
1
n 0
0 1

ns2x

)
I Variance of the estimator ŷ(x) (x is deterministic):

V (ŷ(x)) = V (β̂0 + β̂1x) = V00 + x2V11 + 2xV01 =
σ2

n

(
1 +

x2

s2x

)
I Distribution of the estimator for y(x):

ŷ(x) ∼ N
(
y(x), V (ŷ(x))

)
If σ2 has to be estimated by σ̂2, the normalized estimators for
β0, β1 and y(x) are ∼ T (n− 2).
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)
If σ2 has to be estimated by σ̂2, the normalized estimators for
β0, β1 and y(x) are ∼ T (n− 2).



Econometrics Master’s Course: Methods 3. Classical Inferential Statistics 3.1. OLS Expectation and Covariance

Simple linear regression (ctnd)

I Variance-covariance matrix (assuming w/o loss of generality
x̄ = 0):

V (β̂) = σ2
(
X ′X

)−1
= σ2

(
1
n 0
0 1

ns2x

)
I Variance of the estimator ŷ(x) (x is deterministic):
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Probability density for ŷ(x) for simple linear regression

I If the Gauß-Markov assumptions apply, the model estimation
errors ŷ(x)− y(x) are Gaussian distributed

I The expectation and variance depends on x; the standard error is
hyperbola-shaped.
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3.2. Confidence Intervals:
where the Student-t distribution comes from
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Densities of standard normal vs. Student-t distribution
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Distributions of standard normal vs. Student-t-distribution
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Calculation of the confidence intervals (CI)

CI
(α)
βj

: βj ∈
[
β̂j −∆β̂j , β̂j + ∆β̂j

]
, ∆β̂j = t

(n−J−1)
1−α/2 σ̂β̂j .

I t1−α/2: Quantile (inverse of) the distribution function

I CI “uncertainty principle”: Higher sensitivity implies higher α error.
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Hotel example: CI for the appraisal for “stars” β1
(full model)

Model: y(x) =
∑

j βjxj + ε

Factors:
x0 = 1, x1: #stars, x2: price

Confidence interval (CI):

β1 ∈
[
β̂1 −∆β̂

(α)
1 , β̂1 + ∆β̂

(α)
1

]
∆β̂

(α)
1 = t

(n−3)
1−α/2

√
V̂ (β̂1)

V̂ (β̂1) = σ̂2
ε

[
(X ′X )

−1
]
11

σ̂2
ε = 1

n−3

n∑
i=1

(ŷi − yi)2
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