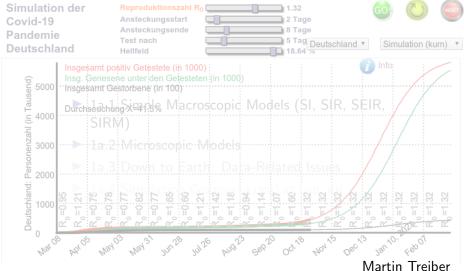
TECHNISCH UNIVERSITÄ DRESDEN

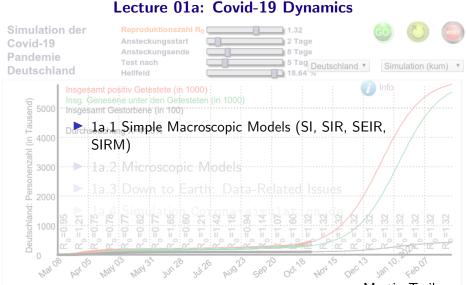
Traffic Econometrics Master's Course

Lecture 01a: Covid-19 Dynamics



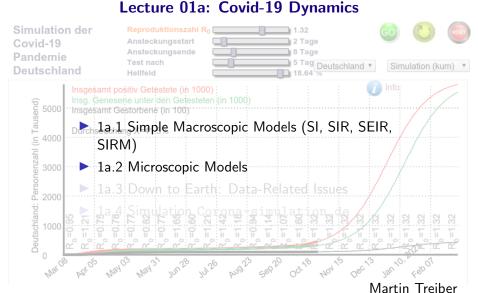
TECHNISC UNIVERSIT DRESDEN

Traffic Econometrics Master's Course



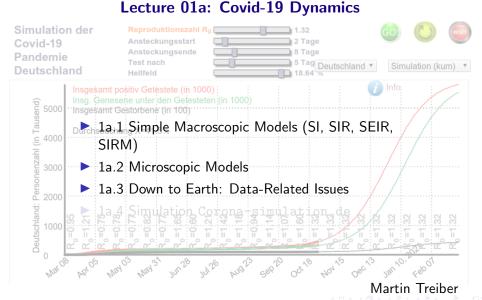
TECHNISC UNIVERSIT DRESDEN

Traffic Econometrics Master's Course



TECHNISC UNIVERSIT DRESDEN

Traffic Econometrics Master's Course



TECHNISC UNIVERSIT DRESDEN

Traffic Econometrics Master's Course

Lecture 01a: Covid-19 Dynamics Tag Deutschland Insdesamt Gestorbene (in 100) 1a.1 Simple Macroscopic Models (SI, SIR, SEIR, SIRM) ► 1a.2 Microscopic Models 1a.3 Down to Earth: Data-Related Issues 1a.4 Simulation Corona-simulation.de

1a.1 Simple macroscopic models I: SI model

Compartemental models: consider different status such as susceptible, infected, or recovered and transitions between them

- As in any macroscopic model on infection dynamics, the basic dynamic quantities are *percentages of the population* (e.g., of a country) rather than individual persons
- Scale separation: The *infection dynamics* is much faster than the rest of the *population dynamics* (births, "normal" deaths, in- and outwards directed migration/moves) \Rightarrow population number N = const.
- Two compartiments: any person can be either susceptible to infection (S), or already infected (I) which includes actually ill, recovered, or dead. Particularly, there is no reverse transition I→S

1a.1 Simple macroscopic models I: SI model

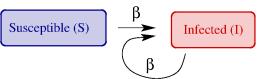
Compartemental models: consider different status such as susceptible, infected, or recovered and transitions between them

- As in any macroscopic model on infection dynamics, the basic dynamic quantities are *percentages of the population* (e.g., of a country) rather than individual persons
- Scale separation: The *infection dynamics* is much faster than the rest of the *population dynamics* (births, "normal" deaths, in- and outwards directed migration/moves) \Rightarrow population number N = const.
- Two compartiments: any person can be either susceptible to infection (S), or already infected (I) which includes actually ill, recovered, or dead. Particularly, there is no reverse transition I→S

1a.1 Simple macroscopic models I: SI model

Compartemental models: consider different status such as susceptible, infected, or recovered and transitions between them

- As in any macroscopic model on infection dynamics, the basic dynamic quantities are *percentages of the population* (e.g., of a country) rather than individual persons
- Scale separation: The *infection dynamics* is much faster than the rest of the *population dynamics* (births, "normal" deaths, in- and outwards directed migration/moves) \Rightarrow population number N = const.
- Two compartiments: any person can be either susceptible to infection (S), or already infected (I) which includes actually ill, recovered, or dead. Particularly, there is no reverse transition I→S



- All infected persons become contagious instantaneously and remain so all the time (notice the inconsistency to the point above)
- ▶ The rate of contagion β (# persons per time unit if everybody else is S) remains constant

$$\Rightarrow \begin{array}{ccc} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\beta IS \end{array}$$
 SI model

- $ightharpoonup S = N_S/N$: fraction of susceptib
- $ightharpoonup I = N_I/N$: fraction of infected
- $ightharpoonup rac{\mathrm{d}}{\mathrm{d}t}(S+I)=0\Leftrightarrow ext{conservation of population number }N= ext{const}$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I(1-I)$$

- All infected persons become contagious instantaneously and remain so all the time (notice the inconsistency to the point above)
- ▶ The rate of contagion β (# persons per time unit if everybody else is S) remains constant

$$\Rightarrow \begin{array}{ccc} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\beta IS \end{array}$$
 SI model

- $ightharpoonup S = N_S/N$: fraction of susceptible
- $ightharpoonup I = N_I/N$: fraction of infected
- $ightharpoonup rac{\mathrm{d}}{\mathrm{d}t}(S+I)=0 \Leftrightarrow \mathrm{conservation} \ \mathrm{of} \ \mathrm{population} \ \mathrm{number} \ N=\mathrm{const}$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I (1 - I)$$

- All infected persons become contagious instantaneously and remain so all the time (notice the inconsistency to the point above)
- ▶ The rate of contagion β (# persons per time unit if everybody else is S) remains constant

$$\Rightarrow \quad \begin{array}{ll} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\beta IS \end{array} \qquad \text{SI model}$$

- ▶ $S = N_S/N$: fraction of susceptible
- $ightharpoonup I = N_I/N$: fraction of infected
- $ightharpoonup rac{\mathrm{d}}{\mathrm{d}t}(S+I)=0 \Leftrightarrow \text{conservation of population number }N=\text{const.}$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I (1 - I)$$

- ► All infected persons become *contagious instantaneously* and remain so all the time (notice the inconsistency to the point above)
- ▶ The rate of contagion β (# persons per time unit if everybody else is S) remains constant

$$\Rightarrow \qquad \frac{\frac{\mathrm{d}S}{\mathrm{d}t} \quad = -\beta IS,}{\frac{\mathrm{d}I}{\mathrm{d}t} \quad = +\beta IS} \qquad \qquad \mathsf{SI \ model}$$

- ▶ $S = N_S/N$: fraction of susceptible
- $ightharpoonup I = N_I/N$: fraction of infected
- $ightharpoonup rac{\mathrm{d}}{\mathrm{d}t}(S+I)=0 \Leftrightarrow \text{conservation of population number }N=\text{const.}$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I (1 - I)$$

- ► All infected persons become *contagious instantaneously* and remain so all the time (notice the inconsistency to the point above)
- ▶ The rate of contagion β (# persons per time unit if everybody else is S) remains constant

$$\Rightarrow \qquad \frac{\frac{\mathrm{d}S}{\mathrm{d}t} \quad = -\beta IS,}{\frac{\mathrm{d}I}{\mathrm{d}t} \quad = +\beta IS} \qquad \qquad \mathsf{SI \ model}$$

- ▶ $S = N_S/N$: fraction of susceptible
- $ightharpoonup I = N_I/N$: fraction of infected
- $lack \frac{\mathrm{d}}{\mathrm{d}t}(S+I)=0 \Leftrightarrow ext{conservation of population number } N= ext{const.}$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I (1 - I)$$

- All infected persons become contagious instantaneously and remain so all the time (notice the inconsistency to the point above)
- ▶ The rate of contagion β (# persons per time unit if everybody else is S) remains constant

$$\Rightarrow \quad \begin{array}{ll} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\beta IS \end{array} \qquad \text{SI model}$$

- ▶ $S = N_S/N$: fraction of susceptible
- $ightharpoonup I = N_I/N$: fraction of infected
- $ightharpoonup rac{\mathrm{d}}{\mathrm{d}t}(S+I)=0 \Leftrightarrow ext{conservation of population number }N= ext{const.}$

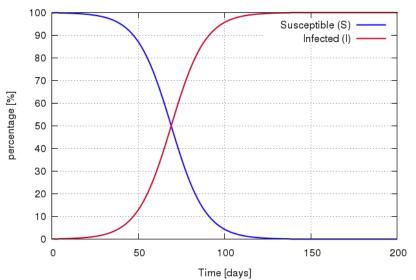
Rewrite with S + I = 1:

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I(1-I)$$

 \Rightarrow classical model for limited growth with saturation 1

SI model III: Simulation

SI model, $\beta = 0.1/day$, I(0) = 0.1%



- ▶ Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming *no longer contagious*
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

$$\begin{array}{ll} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\beta IS - \gamma I, \qquad \text{SIR model} \\ \frac{\mathrm{d}R}{\mathrm{d}t} &= +\gamma I \end{array}$$

- Conservation of the population number: S + I + R = 1
- ? Show that the initial reproduction number is given by $R_0=eta/\gamma$

- Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming no longer contagious
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

Susceptible (S)

$$\begin{array}{ccc}
\beta & & \gamma \\
& & \\
\hline
 &$$

lacktriangle Conservation of the population number: S+I+R=1

Show that the initial reproduction number is given by $R_0=\beta/\gamma$ limitally (S=1), any infected person infects β other persons per day but recovers after an exponentially distributed time $\pi_R\sim \text{Exp}(\gamma)$, so the average #infected people $=\beta E(\pi_R)=\beta/\gamma$

- Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming no longer contagious
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

Susceptible (S)
$$\begin{array}{ccc}
\beta & & \gamma \\
\hline
\beta & & \end{array}$$
Recovered (R)
$$\begin{array}{ccc}
\frac{\mathrm{d}S}{\mathrm{d}t} & = -\beta I S, \\
\frac{\mathrm{d}I}{\mathrm{d}t} & = +\beta I S - \gamma I, & \text{SIR model} \\
\frac{\mathrm{d}R}{\mathrm{d}t} & = +\gamma I
\end{array}$$

- ▶ Conservation of the population number: S + I + R = 1
- **?** Show that the initial reproduction number is given by $R_0=eta/\gamma$

- Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming no longer contagious
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

Susceptible (S)
$$\begin{array}{ccc}
\beta & & \gamma \\
\hline
& & \\
& & \\
& & \\
& \frac{\mathrm{d}S}{\mathrm{d}t} & = -\beta I S, \\
& \frac{\mathrm{d}I}{\mathrm{d}t} & = +\beta I S - \gamma I, \\
& \frac{\mathrm{d}R}{\mathrm{d}t} & = +\gamma I
\end{array}$$
SIR model
$$\begin{array}{ccc}
\frac{\mathrm{d}R}{\mathrm{d}t} & = +\gamma I$$

- ▶ Conservation of the population number: S + I + R = 1
- ? Show that the initial reproduction number is given by $R_0=eta/\gamma$
- Initially (S=1), any infected person infects β other persons per day but recovers after an exponentially distributed time $\tau_R \sim \text{Exp}(\gamma)$, so the average #infected people $= \beta E(\tau_R) = \beta E(\tau_R)$

- ▶ Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming no longer contagious
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

Susceptible (S)
$$\begin{array}{ccc}
\beta & & \gamma \\
\hline
\beta & & \end{array}$$
Recovered (R)
$$\begin{array}{ccc}
\frac{\mathrm{d}S}{\mathrm{d}t} & = -\beta I S, \\
\frac{\mathrm{d}I}{\mathrm{d}t} & = +\beta I S - \gamma I, & \text{SIR model} \\
\frac{\mathrm{d}R}{\mathrm{d}t} & = +\gamma I
\end{array}$$

- ▶ Conservation of the population number: S + I + R = 1
- **?** Show that the initial reproduction number is given by $R_0 = \beta/\gamma$
- Initially (S=1), any infected person infects β other persons per day but recovers after an exponentially distributed time $\tau_R \sim \mathsf{Exp}(\gamma)$, so the average #infected people $= \beta E(\tau_R) = 0$

- ▶ Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming no longer contagious
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

Susceptible (S)
$$\frac{dS}{dt} = -\beta IS,$$

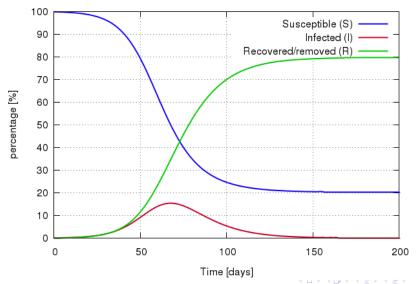
$$\frac{dI}{dt} = +\beta IS - \gamma I,$$

$$\frac{dR}{dt} = +\gamma I$$
SIR model

- ▶ Conservation of the population number: S + I + R = 1
- **?** Show that the initial reproduction number is given by $R_0 = \beta/\gamma$
- Initially (S=1), any infected person infects β other persons per day but recovers after an exponentially distributed time $\tau_R \sim \operatorname{Exp}(\gamma)$, so the average #infected people = $\beta E(\tau_R) = \beta/\gamma$

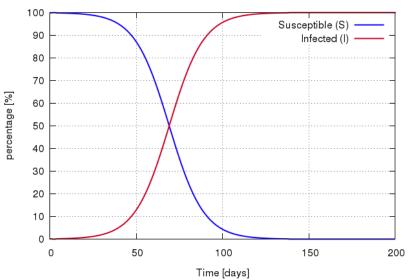
SI and SIR models: simulation

SIR model, $\beta=0.2/\text{day}$, $\gamma=0.1/\text{day} =>R_0=2$, I(0)=0.1%



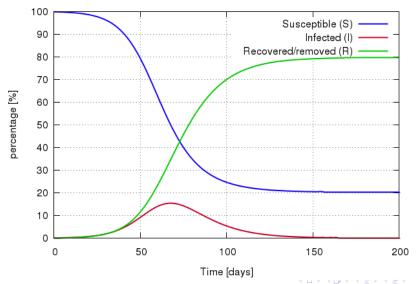
SI and SIR models: simulation

SI model, β =0.1/day, I(0)=0.1%



SI and SIR models: simulation

SIR model, $\beta=0.2/\text{day}$, $\gamma=0.1/\text{day} =>R_0=2$, I(0)=0.1%

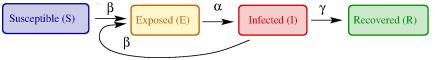


- Adds to the SIR model a finite incubation time $\tau_I \sim \text{Exp}(\alpha)$ where people are infected but not yet contagious ("exposed", E)
- ► Triple chain with S + E + I + R = 1

$$\begin{array}{ll} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}E}{\mathrm{d}t} &= +\beta IS - \alpha E, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\alpha E - \gamma I, \\ \frac{\mathrm{d}R}{\mathrm{d}t} &= +\gamma I \end{array}$$
 SEIR model

- ? Show that $R_0 = \beta/\gamma$ and that the initial time for doubling of the infected is given by $\tau = (1/\gamma + 1/\alpha)/\log_2(R_0)$
- 1 R_0 as in the SIR model. The average time for passing an infection is the sum $1/\gamma + 1/\alpha$ of the incubation and infection times. In this timescale, there are $\log_2(R_0)$ doublimes.

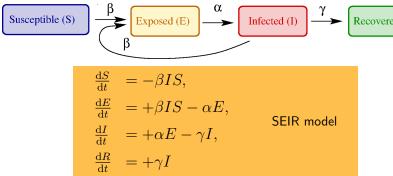
- Adds to the SIR model a finite incubation time $\tau_I \sim \text{Exp}(\alpha)$ where people are infected but not yet contagious ("exposed", E)
- Triple chain with S + E + I + R = 1:



$$\begin{array}{ll} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}E}{\mathrm{d}t} &= +\beta IS - \alpha E, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\alpha E - \gamma I, \end{array}$$
 SEIR model
$$\begin{array}{ll} \frac{\mathrm{d}R}{\mathrm{d}t} &= +\gamma I \end{array}$$

- ? Show that $R_0=\beta/\gamma$ and that the initial time for doubling of the infected is given by $\tau=(1/\gamma+1/\alpha)/\log_2(R_0)$

- Adds to the SIR model a finite incubation time $\tau_I \sim \text{Exp}(\alpha)$ where people are infected but not yet contagious ("exposed", E)
- Triple chain with S + E + I + R = 1:



- ? Show that $R_0=\beta/\gamma$ and that the initial time for doubling of the infected is given by $\tau=(1/\gamma+1/\alpha)/\log_2(R_0)$
- ! R_0 as in the SIR model. The average time for passing an infection is the sum $1/\gamma + 1/\alpha$ of the incubation and infection times. In this timescale, there are $\log_2(R_0)$ doublings.

- Adds to the SIR model a finite incubation time $\tau_I \sim \text{Exp}(\alpha)$ where people are infected but not yet contagious ("exposed", E)
- ► Triple chain with S + E + I + R = 1:

Susceptible (S)

$$\frac{dS}{dt} = -\beta IS,$$

$$dE = -\beta IS,$$

$$\begin{array}{ll} \frac{\mathrm{d}E}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}E}{\mathrm{d}t} &= +\beta IS - \alpha E, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\alpha E - \gamma I, \\ \frac{\mathrm{d}R}{\mathrm{d}t} &= +\gamma I \end{array}$$
 SEIR model

- ? Show that $R_0 = \beta/\gamma$ and that the initial time for doubling of the infected is given by $\tau = (1/\gamma + 1/\alpha)/\log_2(R_0)$
- $oldsymbol{!}$ R_0 as in the SIR model. The average time for passing an infection is the
 - um $1/\gamma+1/\alpha$ of the incubation and infection times. In this timescale, there are $\log_2(R_0)$ doublings. \blacksquare

- Adds to the SIR model a finite incubation time $\tau_I \sim \text{Exp}(\alpha)$ where people are infected but not yet contagious ("exposed", E)
- ► Triple chain with S + E + I + R = 1:

Susceptible (S)
$$\beta$$
Exposed (E)
$$\gamma$$
Recovered (R)

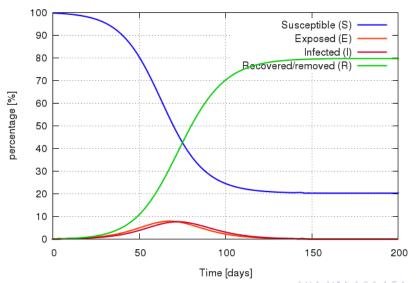
$$\begin{array}{ll} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}E}{\mathrm{d}t} &= +\beta IS - \alpha E, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\alpha E - \gamma I, \end{array}$$
 SEIR model
$$\begin{array}{ll} \frac{\mathrm{d}R}{\mathrm{d}t} &= +\gamma I \end{array}$$

- ? Show that $R_0 = \beta/\gamma$ and that the initial time for doubling of the infected is given by $\tau = (1/\gamma + 1/\alpha)/\log_2(R_0)$
- ! R_0 as in the SIR model. The average time for passing an infection is the sum $1/\gamma + 1/\alpha$ of the incubation and infection times. In this timescale, there are $\log_2(R_0)$ doublings.

TECHNISCHE UNIVERSITÄT DRESDEN

SIR vs. SEIR model simulations

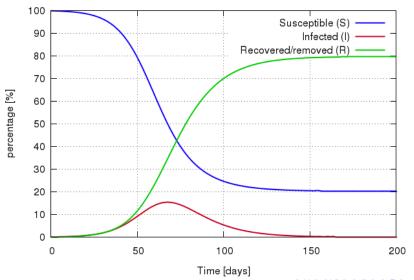
SEIR, β =0.4/day, γ = α =0.2/day =>R₀=2, E(0)=I(0)=0.1%



TECHNISCHE UNIVERSITÄT DRESDEN

SIR vs. SEIR model simulations

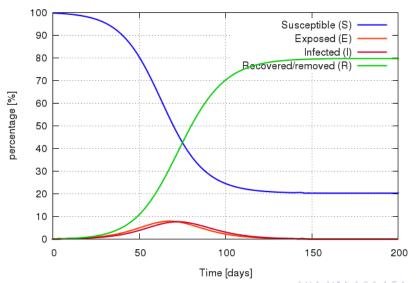
SIR model, $\beta=0.2/\text{day}$, $\gamma=0.1/\text{day} =>R_0=2$, I(0)=0.1%



TECHNISCHE UNIVERSITÄT DRESDEN

SIR vs. SEIR model simulations

SEIR, β =0.4/day, γ = α =0.2/day =>R₀=2, E(0)=I(0)=0.1%

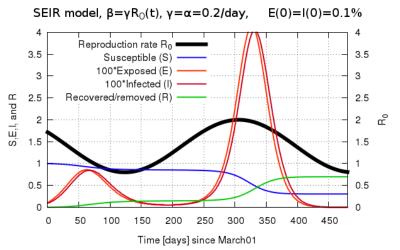


- \Rightarrow make the reproduction number $R_0(t)$ time dependent
- \Rightarrow infection rate β variable: $\beta = \gamma R_0(t)$

- \Rightarrow make the reproduction number $R_0(t)$ time dependent
- \Rightarrow infection rate β variable: $\beta = \gamma R_0(t)$

- \Rightarrow make the reproduction number $R_0(t)$ time dependent
- \Rightarrow infection rate β variable: $\beta = \gamma R_0(t)$

- \Rightarrow make the reproduction number $R_0(t)$ time dependent
- \Rightarrow infection rate β variable: $\beta = \gamma R_0(t)$



- The SI, SIR, SEIR models were ordinary differential equations (ODEs)

- ► The SI, SIR, SEIR models were ordinary differential equations (ODEs)
- Another more direct approach are iterated maps: models for time evolution by classical model chaining
- can be interpreted as numerical solutions of ODEs but they are more flexible allowing "real" memory, e.g., truly nonzero incubation time instead of an exponential distributed one
- Of course, this also means we need initialize all past values within the memory time

- ► The SI, SIR, SEIR models were **ordinary differential equations** (ODEs)
- Another more direct approach are iterated maps: models for time evolution by classical model chaining
- can be interpreted as numerical solutions of ODEs but they are more flexible allowing "real" memory, e.g., truly nonzero incubation time instead of an exponential distributed one
- Of course, this also means we need initialize all past values within the memory time

- The SI, SIR, SEIR models were ordinary differential equations (ODEs)
- Another more direct approach are iterated maps: models for time evolution by classical model chaining
- can be interpreted as numerical solutions of ODEs but they are more flexible allowing "real" memory, e.g., truly nonzero incubation time instead of an exponential distributed one
- ▶ Of course, this also means we need initialize all past values within the memory time

- An infected person contacts R_0 persons and infects R_0S persons exactly τ_I days after his/her own infection

$$I(t) = \sum_{j=i-\tau_I+1}^{i} I_j$$

$$\begin{array}{ll} I_t &= R_0 S(t-\tau_I) I_{t-\tau_I}, \\ S(t) &= S(t-1) - I_t, & \text{SIR model} \\ R(t) &= R(t-1) + I_{t-\tau_R}, & \text{with memory} \\ I(t) &= 1 - S(t) - R(t) \end{array}$$

- An infected person contacts R_0 persons and infects R_0S persons exactly τ_I days after his/her own infection
- \Rightarrow need history of all fractions $I_{t'}$ of persons infected *exactly* at day $t' \leq t$
- lacktriangle The person recovers exactly au_R days after infection
- \Rightarrow The total fraction of ill persons (active cases) at day t is given by

$$I(t) = \sum_{j=i-\tau_I+1}^{i} I_j$$

$$\begin{array}{ll} I_t &= R_0 S(t-\tau_I) I_{t-\tau_I}, \\ S(t) &= S(t-1) - I_t, \\ R(t) &= R(t-1) + I_{t-\tau_R}, \\ I(t) &= 1 - S(t) - R(t) \end{array} \qquad \text{SIR model with memory}$$

Notice that the recovery does not influence the infection process since only infection day τ_I is contagious

- An infected person contacts R_0 persons and infects R_0S persons exactly τ_I days after his/her own infection
- \Rightarrow need history of all fractions $I_{t'}$ of persons infected exactly at day $t' \leq t$
- lacktriangle The person recovers exactly au_R days after infection
- \Rightarrow The total fraction of ill persons (*active cases*) at day t is given by

$$I(t) = \sum_{j=i-\tau_I+1}^{i} I_j$$

$$\begin{array}{ll} I_t &= R_0 S(t-\tau_I) I_{t-\tau_I}, \\ S(t) &= S(t-1) - I_t, \\ R(t) &= R(t-1) + I_{t-\tau_R}, \\ I(t) &= 1 - S(t) - R(t) \end{array} \qquad \text{SIR model}$$
 with memory

Notice that the recovery does not influence the infection process since only infection day τ_I is contagious

- An infected person contacts R_0 persons and infects R_0S persons exactly τ_I days after his/her own infection
- \Rightarrow need history of all fractions $I_{t'}$ of persons infected exactly at day $t' \leq t$
- ▶ The person recovers exactly τ_R days after infection
- \Rightarrow The total fraction of ill persons (active cases) at day t is given by

$$I(t) = \sum_{j=i-\tau_I+1}^{i} I_j$$

$$\begin{split} I_t &= R_0 S(t-\tau_I) I_{t-\tau_I}, \\ S(t) &= S(t-1) - I_t, \\ R(t) &= R(t-1) + I_{t-\tau_R}, \\ I(t) &= 1 - S(t) - R(t) \end{split} \qquad \text{SIR model}$$
 with memory

Notice that the recovery does not influence the infection process since only infection day τ_I is contagious

- \triangleright An infected person contacts R_0 persons and infects R_0S persons exactly τ_I days after his/her own infection
- \Rightarrow need history of all fractions $I_{t'}$ of persons infected exactly at day t' < t
- The person recovers exactly τ_R days after infection
- \Rightarrow The total fraction of ill persons (active cases) at day t is given by

$$I(t) = \sum_{j=i-\tau_I+1}^{i} I_j$$

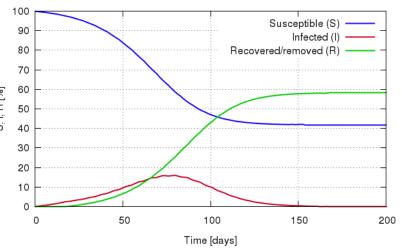
$$\begin{split} I_t &= R_0 S(t-\tau_I) I_{t-\tau_I}, \\ S(t) &= S(t-1) - I_t, \\ R(t) &= R(t-1) + I_{t-\tau_R}, \\ I(t) &= 1 - S(t) - R(t) \end{split} \qquad \text{SIR model}$$
 with memory

Notice that the recovery does not influence the infection process since only infection day τ_I is contagious

TECHNISCHE UNIVERSITÄT DRESDEN

Simulation of the SIR model with memory

SIR iterated, $\tau_{l}{=}7$ days, $\tau_{R}{=}18$ days, $I_{t}{=}0.001$ for $t{<}\tau_{l}$



The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)

- ▶ The health status of each person i is exactly one out of a set, e.g. status \in { S, E, I, R }
- ▶ Transition $S_i \to E_i$ if an S person i is sufficiently close to an I person j sufficiently long, e.g.

$$S_i(t) \to E_i(t)$$
 if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\forall \, t' : t - \tau_E \le t' \le t$

- ▶ Transition to an I person after an incubation time τ_1
- lacktriangle Transition to an R person after a time period $au_R > au_I$

The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)

 $\mathsf{status} \in \{ \mathsf{S}, \mathsf{E}, \mathsf{I}, \mathsf{R} \}$

▶ The health status of each person i is exactly one out of a set, e.g.

▶ Transition $S_i \to E_i$ if an S person i is sufficiently close to an I person j sufficiently long, e.g.

$$S_i(t) \to E_i(t)$$
 if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\forall \,t' : t - \tau_E \le t' \le t$

- ▶ Transition to an I person after an incubation time τ_1
- lacktriangle Transition to an R person after a time period $au_R > au_1$

The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)

▶ The health status of each person i is exactly one out of a set, e.g.

- Iransition $S_i \to E_i$ if an S person i is sufficiently close to an I person j sufficiently long, e.g.

$$S_i(t) \to E_i(t)$$
 if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\,\forall \,\, t' : t - \tau_E \le t' \le t$

- ightharpoonup Transition to an I person after an incubation time τ_1
- ▶ Transition to an R person after a time period $\tau_R > \tau_R$

The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)

▶ The health status of each person i is exactly one out of a set, e.g.

- status \in { S, E, I, R }

 Transition $S_i \rightarrow E_i$ if an S person i is sufficiently close to an L person i
- ▶ Transition $S_i \to E_i$ if an S person i is sufficiently close to an I person j sufficiently long, e.g.

$$S_i(t) \to E_i(t)$$
 if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\,\forall \,\, t' : t - \tau_E \le t' \le t$

- lacktriangle Transition to an I person after an incubation time au_I
- ▶ Transition to an R person after a time period $\tau_R > \tau_I$

The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)

▶ The health status of each person i is exactly one out of a set, e.g.

- status \in { S, E, I, R }

 Transition $S_i \to E_i$ if an S person i is sufficiently close to an L person i
- ▶ Transition $S_i \to E_i$ if an S person i is sufficiently close to an I person j sufficiently long, e.g.

$$S_i(t) \to E_i(t)$$
 if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\,\forall \,\, t' : t - \tau_E \le t' \le t$

- lacktriangle Transition to an I person after an incubation time au_I
- ▶ Transition to an R person after a time period $\tau_R > \tau_I$

The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)

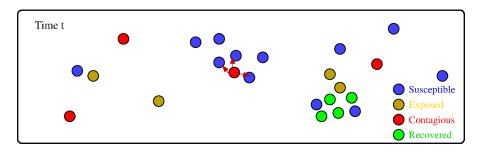
▶ The health status of each person i is exactly one out of a set, e.g.

- status \in { S, E, I, R }

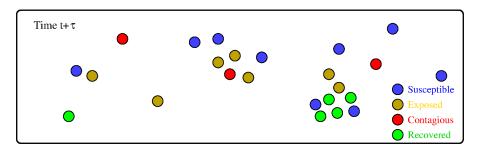
 Transition $S_i \to E_i$ if an S person i is sufficiently close to an I person j
- Iransition $S_i \to E_i$ if an S person i is sufficiently close to an I person j sufficiently long, e.g.

$$S_i(t) \to E_i(t)$$
 if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\,\forall \,\, t' : t - \tau_E \le t' \le t$

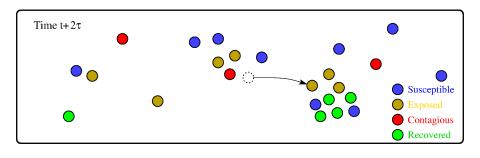
- lacktriangle Transition to an I person after an incubation time au_I
- ▶ Transition to an R person after a time period $\tau_R > \tau_I$



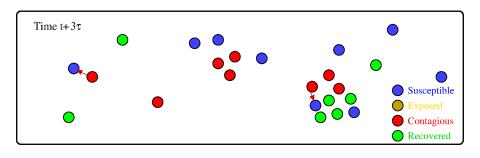
- ► Time t: superspreading event



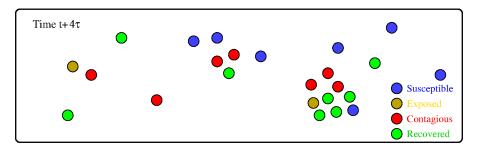
- ► Time *t*: superspreading event
- ▶ Time $t + \tau$: three people infected in the middle group
- Time $t + 2\tau$: one of the newly infected moves to the other group
- ▶ Time $t + 3\tau$: incubation time over (also at the left group)
- ightharpoonup Time $t+4\tau$: two infections in two groups



- ► Time *t*: superspreading event
- ▶ Time $t + \tau$: three people infected in the middle group
- ▶ Time $t + 2\tau$: one of the newly infected moves to the other group
- ► Time $t + 3\tau$: incubation time over (also at the left group)
- ightharpoonup Time $t+4\tau$: two infections in two groups



- ► Time *t*: superspreading event
- ▶ Time $t + \tau$: three people infected in the middle group
- ▶ Time $t + 2\tau$: one of the newly infected moves to the other group
- ▶ Time $t + 3\tau$: incubation time over (also at the left group)
- ightharpoonup Time $t + 4\tau$: two infections in two groups



- ► Time t: superspreading event
- ightharpoonup Time $t+\tau$: three people infected in the middle group
- ▶ Time $t + 2\tau$: one of the newly infected moves to the other group
- ▶ Time $t + 3\tau$: incubation time over (also at the left group)
- ightharpoonup Time $t+4\tau$: two infections in two groups

We want to know: **#Infections** $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \le t$

- ▶ The tests have an imperfect **sensitivity** $P(\text{positive}|\text{infected}) \approx 99\%$
- ... and an imperfect specifity $P(\text{negative}|\text{not infected}) \approx 99\%$
- ▶ Different/inconsistent definitions of a "Covid-19 death" event
- ▶ There is a high number of untested and potentially ill people \Rightarrow high number of unreported cases, probably $\gg N_T$
- ► The fraction of reported cases depends on the number of tests via a monotonously increasing but otherwise unknown function

We want to know: **#Infections** $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \leq t$

We want to know: #Infections $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \leq t$

1a.3 Down to reality/econometrics: what can be observed?

- The tests have an imperfect sensitivity $P(\text{positive}|\text{infected}) \approx 99\%$
- ightharpoonup ... and an imperfect specifity $P(\text{negative}|\text{not infected}) \approx 99\%$

We want to know: **#Infections** $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \leq t$

- The tests have an imperfect sensitivity $P(\text{positive}|\text{infected}) \approx 99\%$
- ightharpoonup ... and an imperfect specifity $P(\text{negative}|\text{not infected}) \approx 99\%$

We want to know: #Infections $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and #Covid-19 deaths $N_D(t)$ including the history t' < t

- ▶ The tests have an imperfect sensitivity $P(\text{positive}|\text{infected}) \approx 99\%$
- ightharpoonup ... and an imperfect specifity $P(\text{negative}|\text{not infected}) \approx 99\%$
- Different/inconsistent definitions of a "Covid-19 death" event

We want to know: **#Infections** $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \leq t$

- ▶ The tests have an imperfect sensitivity $P(\mathsf{positive}|\mathsf{infected}) \approx 99\,\%$
- lacktriangle ... and an imperfect **specifity** $P(\mathsf{negative}|\mathsf{not}|\mathsf{infected}) pprox 99\,\%$
- ▶ Different/inconsistent definitions of a "Covid-19 death" event
- ▶ There is a high number of untested and potentially ill people \Rightarrow high number of unreported cases, probably $\gg N_T$
- ► The fraction of reported cases depends on the number of tests via a monotonously increasing but otherwise unknown function

We want to know: **#Infections** $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \leq t$

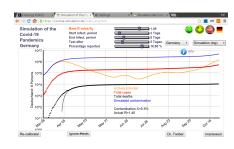
- ▶ The tests have an imperfect sensitivity $P(\mathsf{positive}|\mathsf{infected}) \approx 99\,\%$
- ... and an imperfect specifity $P(\text{negative}|\text{not infected}) \approx 99\,\%$
- ▶ Different/inconsistent definitions of a "Covid-19 death" event
- ▶ There is a high number of untested and potentially ill people \Rightarrow high number of unreported cases, probably $\gg N_T$
- ► The fraction of reported cases depends on the number of tests via a monotonously increasing but otherwise unknown function

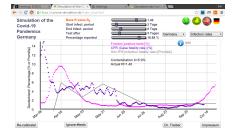
Corona-simulation.de (as of Oct 30, 2020)

Interactive data-driven simulator based on an extended SIRM model

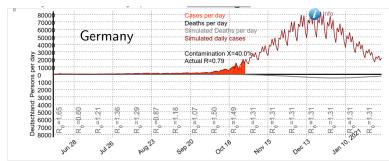
Features I: different countries

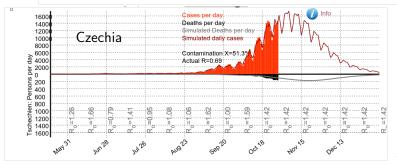
Features II: different windows





Features III: scenario-based projections





Features III: "lockdown" shifts "wave"

Features IV: sensitivity tests, e.g., ramping up #tests

Summary/take-home messages

- Only data brings us "down to Earth" allowing for
 - tests of the model quality
 - doing useful things such as projection scenarios (do not forget Mark Twains quote about predictions!)
- ► Always **check definitions of events**, e.g., "Covid-19 infection"

- Only data brings us "down to Earth" allowing for
 - tests of the model quality
 - doing useful things such as projection scenarios (do not forget Mark Twains quote about predictions!)
- Always check definitions of events, e.g., "Covid-19 infection" (including all symptom free people?) or "Covid-19 death" (including fatal traffic accidents of a test-positive persons?)
- ▶ Do not confuse/mix proxies with the real quantities, e.g., positive tests vs. infection events. Also check how well the proxy represents the interesting quantities (#positive tests is a poor proxy for the #infections, #recorded Covid-19 death is a much better proxy for all the Covid-19 deaths)
- ► Check your sample. Is it essentially the population or only a small and unknown fraction thereof?
- ▶ Be careful with exponentially growing things since small changes in the scenario setting can greatly influence the resul

- Only data brings us "down to Earth" allowing for
 - tests of the model quality
 - doing useful things such as projection scenarios (do not forget Mark Twains quote about predictions!)
- Always check definitions of events, e.g., "Covid-19 infection" (including all symptom free people?) or "Covid-19 death" (including fatal traffic accidents of a test-positive persons?)
- ▶ Do not confuse/mix proxies with the real quantities, e.g., positive tests vs. infection events. Also check how well the proxy represents the interesting quantities (#positive tests is a poor proxy for the #infections, #recorded Covid-19 death is a much better proxy for all the Covid-19 deaths)
- ► Check your sample. Is it essentially the population or only a small and unknown fraction thereof?
- ► Be careful with exponentially growing things since small changes in the scenario setting can greatly influence the result

Summary/take-home messages

- Only data brings us "down to Earth" allowing for
 - tests of the model quality
 - doing useful things such as projection scenarios (do not forget Mark Twains quote about predictions!)
- Always check definitions of events, e.g., "Covid-19 infection" (including all symptom free people?) or "Covid-19 death" (including fatal traffic accidents of a test-positive persons?)
- ▶ Do not confuse/mix proxies with the real quantities, e.g., positive tests *vs.* infection events. Also check how well the proxy *represents* the interesting quantities (#positive tests is a poor proxy for the #infections, #recorded Covid-19 death is a much better proxy for all the Covid-19 deaths)
- Check your sample. Is it essentially the population or only a small and unknown fraction thereof?
- ► Be careful with exponentially growing things since small changes in the scenario setting can greatly influence the result

Summary/take-home messages

- Only data brings us "down to Earth" allowing for
 - tests of the model quality
 - doing useful things such as projection scenarios (do not forget Mark Twains quote about predictions!)
- ► Always check definitions of events, e.g., "Covid-19 infection" (including all symptom free people?) or "Covid-19 death" (including fatal traffic accidents of a test-positive persons?)
- ▶ Do not confuse/mix proxies with the real quantities, e.g., positive tests vs. infection events. Also check how well the proxy represents the interesting quantities (#positive tests is a poor proxy for the #infections, #recorded Covid-19 death is a much better proxy for all the Covid-19 deaths)
- Check your sample. Is it essentially the population or only a small and unknown fraction thereof?
- ▶ Be careful with exponentially growing things since small changes in the scenario setting can greatly influence the result