Traffic Econometrics Master's Course

Lecture 01: General

1.1 Scope of econometrics - from a mathematical point of view

Economic Theories

Mathematical
Methods

Data, Statistics

1.1 Scope of econometrics - from a mathematical point of view

1．1 Scope of econometrics－from a mathematical point of view

1.1 Scope of econometrics - from a mathematical point of view

1.1 Scope of econometrics - from a mathematical point of view

1.1 Scope of econometrics - from a mathematical point of view

The field of Traffic Econometrics includes all mathematical models and statistical procedures to quantitatively analyze empirical (transportation) data with respect to economic effects.

1.2 General procedure of an econometric analysis

Defining the objectives Literature, past research

1.2 General procedure of an econometric analysis

1.3 Information flow of an econometric model

1.3 Information flow of an econometric model

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models \rightarrow Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models - Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
\rightarrow Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
- Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are
\rightarrow exclusive: at most one alternative can be ticked

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
- Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are ...
\rightarrow exclusive: at most one alternative can be ticked
\rightarrow complete: at least one alternative may be ticked \Rightarrow exactly one

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
- Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are ...
- exclusive: at most one alternative can be ticked

```
| complete: at least one alternative may be ticked }=>\mathrm{ exactly one
```

- sufficiently different.

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
- Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are ...
- exclusive: at most one alternative can be ticked
- complete: at least one alternative may be ticked \Rightarrow exactly one
$>$ sufficiently different.

How to formulate a question regarding the kind of schools visited?

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
- Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are ...
- exclusive: at most one alternative can be ticked
- complete: at least one alternative may be ticked \Rightarrow exactly one
- sufficiently different.

How to formulate a question regarding the kind of schools visited? For route choice detour of to go to a bakery. Which criterion is violated?

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
- Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are ...
- exclusive: at most one alternative can be ticked
- complete: at least one alternative may be ticked \Rightarrow exactly one
- sufficiently different.
? How to formulate a question regarding the kind of schools visited?
For route choice, we have two routes that only differ in that one route contains a small detour of to go to a bakery. Which criterion is violated?

1.4 General Criteria for the Model Selection

Since econometrics describes things quantitatively, its basic language is mathematics and its basic concept a (mathematical) model

- The model must be compatible to the data and the research objective:
- Model for fuel/energy consumption \rightarrow real-valued output \rightarrow e.g., regression models
- Model for trip or mode choice \rightarrow discrete output \rightarrow e.g., discrete-choice models
- Classification of different days with respect to the traffic demand profile (mid-workdays, sundays, holidays, ...) \rightarrow econometric discriminant analysis
- If the model is a discrete-choice model, the questions of the survey must be sets of alternatives that are ...
- exclusive: at most one alternative can be ticked
- complete: at least one alternative may be ticked \Rightarrow exactly one
- sufficiently different.
? How to formulate a question regarding the kind of schools visited?
? For route choice, we have two routes that only differ in that one route contains a small detour of to go to a bakery. Which criterion is violated?

1.5 Econometric models - a Closer Look

$$
Y_{k}=f_{k}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}, . ., \tilde{x}_{M}, \beta_{0}, \ldots, \beta_{j}, \ldots, \beta_{J}\right)+\epsilon_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}
$$

\rightarrow A model consists of one or more equations $Y_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}$ explaining the output quantity Y_{k} as a function of the input $\tilde{\boldsymbol{x}}$
$>$ to tune the model, there are model parameters β

1.5 Econometric models - a Closer Look

$$
Y_{k}=f_{k}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}, . ., \tilde{x}_{M}, \beta_{0}, \ldots, \beta_{j}, \ldots, \beta_{J}\right)+\epsilon_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}
$$

- A model consists of one or more equations $Y_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}$ explaining the output quantity Y_{k} as a function of the input $\tilde{\boldsymbol{x}}$
> to tune the model, there are model parameters β
$>$ a model can be stochastic $\left(\epsilon_{k} \neq 0\right)$ or deterministic

1.5 Econometric models - a Closer Look

$$
Y_{k}=f_{k}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}, . ., \tilde{x}_{M}, \beta_{0}, \ldots, \beta_{j}, \ldots, \beta_{J}\right)+\epsilon_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}
$$

- A model consists of one or more equations $Y_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}$ explaining the output quantity Y_{k} as a function of the input $\tilde{\boldsymbol{x}}$
- to tune the model, there are model parameters $\boldsymbol{\beta}$
$>$ a model can be stochastic $\left(\epsilon_{k} \neq 0\right)$ or deterministic $\left(\epsilon_{k}=0\right)$
\rightarrow the above formulation is the most general one and includes all conceivable econometric models.

1.5 Econometric models - a Closer Look

$$
Y_{k}=f_{k}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}, . ., \tilde{x}_{M}, \beta_{0}, \ldots, \beta_{j}, \ldots, \beta_{J}\right)+\epsilon_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}
$$

- A model consists of one or more equations $Y_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}$ explaining the output quantity Y_{k} as a function of the input $\tilde{\boldsymbol{x}}$
- to tune the model, there are model parameters $\boldsymbol{\beta}$
- a model can be stochastic $\left(\epsilon_{k} \neq 0\right)$ or deterministic $\left(\epsilon_{k}=0\right)$
- the above formulation is the most general one and includes all conceivable econometric models.

1.5 Econometric models - a Closer Look

$$
Y_{k}=f_{k}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}, . ., \tilde{x}_{M}, \beta_{0}, \ldots, \beta_{j}, \ldots, \beta_{J}\right)+\epsilon_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}
$$

- A model consists of one or more equations $Y_{k}=f_{k}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon_{k}$ explaining the output quantity Y_{k} as a function of the input $\tilde{\boldsymbol{x}}$
- to tune the model, there are model parameters $\boldsymbol{\beta}$
- a model can be stochastic $\left(\epsilon_{k} \neq 0\right)$ or deterministic $\left(\epsilon_{k}=0\right)$
- the above formulation is the most general one and includes all conceivable econometric models.

1.5.1 Endogenous Variables

- The name endogenous variable comes from the Greek endo $(\epsilon \nu \delta)$ and the suffix gen ($\gamma \epsilon \nu \circ \varsigma$) meaning generated from the inside [the model]
- in systems theory, the endogenous variables are the output
\rightarrow mathematically, the endogenous variable are the dependent variables

1.5.1 Endogenous Variables

- The name endogenous variable comes from the Greek endo $(\epsilon \nu \delta)$ and the suffix gen ($\gamma \epsilon \nu \circ \varsigma$) meaning generated from the inside [the model]
- in systems theory, the endogenous variables are the output
$>$ mathematically, the endogenous variable are the dependent variables
\rightarrow logically, they are the explained variables

1.5.1 Endogenous Variables

- The name endogenous variable comes from the Greek endo $(\epsilon \nu \delta)$ and the suffix gen ($\gamma \epsilon \nu \circ \varsigma$) meaning generated from the inside [the model]
- in systems theory, the endogenous variables are the output
- mathematically, the endogenous variable are the dependent variables
- logically, they are the explained variables

Example mode choice: Y_{k} : \#decisions for mode k (e.g., walking, cycling, public
transport, car, combined/others)

1.5.1 Endogenous Variables

- The name endogenous variable comes from the Greek endo $(\epsilon \nu \delta)$ and the suffix gen ($\gamma \epsilon \nu \circ \varsigma$) meaning generated from the inside [the model]
- in systems theory, the endogenous variables are the output
- mathematically, the endogenous variable are the dependent variables
- logically, they are the explained variables

Example mode choice: Y_{k} : \#decisions for mode k (e.g., walking, cycling, public transport, car, combined/others)

1.5.1 Endogenous Variables

- The name endogenous variable comes from the Greek endo $(\epsilon \nu \delta)$ and the suffix gen ($\gamma \epsilon \nu \omega \varsigma$) meaning generated from the inside [the model]
- in systems theory, the endogenous variables are the output
- mathematically, the endogenous variable are the dependent variables
- logically, they are the explained variables

Example mode choice: Y_{k} : \#decisions for mode k (e.g., walking, cycling, public transport, car, combined/others)

Formulate conditions for the Y_{k} in order to ensure that the choice set is exclusive and complete

1.5.2 Exogeneous variables

- The name exogenous variable comes from the Greek exo $(\epsilon \xi \omega)$ and the suffix gen ($\gamma \in \nu \circ \varsigma$) meaning coming from the outside
> in systems theory, the endogenous variables are the input
- mathematically, the endogenous variable are the independent variables

1.5.2 Exogeneous variables

- The name exogenous variable comes from the Greek exo $(\epsilon \xi \omega)$ and the suffix gen ($\gamma \epsilon \nu O \varsigma$) meaning coming from the outside
- in systems theory, the endogenous variables are the input
- mathematically, the endogenous variable are the independent variables logically, they are the explanatory variables

1.5.2 Exogeneous variables

- The name exogenous variable comes from the Greek exo $(\epsilon \xi \omega)$ and the suffix gen ($\gamma \epsilon \nu \circ \varsigma$) meaning coming from the outside
- in systems theory, the endogenous variables are the input
- mathematically, the endogenous variable are the independent variables
- logically, they are the explanatory variables
$>$ an additive fixed function of explanatory variables is often called a factor

1.5.2 Exogeneous variables

- The name exogenous variable comes from the Greek exo $(\epsilon \xi \omega)$ and the suffix gen ($\gamma \in \nu \circ \varsigma$) meaning coming from the outside
- in systems theory, the endogenous variables are the input
- mathematically, the endogenous variable are the independent variables
- logically, they are the explanatory variables
- an additive fixed function of explanatory variables is often called a factor

Since the exogenous variable describe explanatory factors, they are generally considered to
be deterministic with all stochasticity deferred to additional random terms ϵ

1.5.2 Exogeneous variables

- The name exogenous variable comes from the Greek exo $(\epsilon \xi \omega)$ and the suffix gen ($\gamma \epsilon \nu \circ \varsigma$) meaning coming from the outside
- in systems theory, the endogenous variables are the input
- mathematically, the endogenous variable are the independent variables
- logically, they are the explanatory variables
- an additive fixed function of explanatory variables is often called a factor

Since the exogenous variable describe explanatory factors, they are generally considered to be deterministic with all stochasticity deferred to additional random terms ϵ_{k}

1.5.2 Exogeneous variables

- The name exogenous variable comes from the Greek exo $(\epsilon \xi \omega)$ and the suffix gen ($\gamma \epsilon \nu \circ \varsigma$) meaning coming from the outside
- in systems theory, the endogenous variables are the input
- mathematically, the endogenous variable are the independent variables
- logically, they are the explanatory variables
- an additive fixed function of explanatory variables is often called a factor

Since the exogenous variable describe explanatory factors, they are generally considered to be deterministic with all stochasticity deferred to additional random terms ϵ_{k}

Example mode choice: \tilde{x}_{m} can be travel times or costs for the different modes, and also
socioeconomic attributes such as age, gender, income, or the possession of a car

1.5.2 Exogeneous variables

- The name exogenous variable comes from the Greek exo $(\epsilon \xi \omega)$ and the suffix gen ($\gamma \in \nu \circ \varsigma$) meaning coming from the outside
- in systems theory, the endogenous variables are the input
- mathematically, the endogenous variable are the independent variables
- logically, they are the explanatory variables
- an additive fixed function of explanatory variables is often called a factor

Since the exogenous variable describe explanatory factors, they are generally considered to be deterministic with all stochasticity deferred to additional random terms ϵ_{k}

Example mode choice: \tilde{x}_{m} can be travel times or costs for the different modes, and also socioeconomic attributes such as age, gender, income, or the possession of a car

1.5.3 Random terms

The random terms ϵ_{k}, also called residual terms (from residuum: the rest) summarize all what is not known and cannot be explained by the exogenous/explanatory variables:

Scio nescio (I know that I do not know)
possible reasons for ϵ_{k}

- model does not include all relevant exogenous variables (watch out for bias!)
$>$ all relevant factors are there but are not bundled to appropriate linear factors (e.g explaining the fuel consumption by a linear function of the speed)

1.5.3 Random terms

The random terms ϵ_{k}, also called residual terms (from residuum: the rest) summarize all what is not known and cannot be explained by the exogenous/explanatory variables:

Scio nescio (I know that I do not know)

possible reasons for ϵ_{k} :

- model does not include all relevant exogenous variables (watch out for bias!)
- all relevant factors are there but are not bundled to appropriate linear factors (e.g. explaining the fuel consumption by a linear function of the speed)
- the data used for model calibration contain errors

1.5.3 Random terms

The random terms ϵ_{k}, also called residual terms (from residuum: the rest) summarize all what is not known and cannot be explained by the exogenous/explanatory variables:

Scio nescio (I know that I do not know)

possible reasons for ϵ_{k} :

- model does not include all relevant exogenous variables (watch out for bias!)
- all relevant factors are there but are not bundled to appropriate linear factors (e.g., explaining the fuel consumption by a linear function of the speed)
- the data used for model calibration contain errors
- in case of human decisions:
\qquad

1.5.3 Random terms

The random terms ϵ_{k}, also called residual terms (from residuum: the rest) summarize all what is not known and cannot be explained by the exogenous/explanatory variables:

Scio nescio (I know that I do not know)

possible reasons for ϵ_{k} :

- model does not include all relevant exogenous variables (watch out for bias!)
- all relevant factors are there but are not bundled to appropriate linear factors (e.g., explaining the fuel consumption by a linear function of the speed)
- the data used for model calibration contain errors
$>$ in case of human decisions:
man \neq machine; homo \neq homo oeconomicus
Example mode choice: we ignored the weather or the additional utility to stop by at a bakery (not provided by public transport), or need of a certain mode (car) for subsequent trips of that day

1.5.3 Random terms

The random terms ϵ_{k}, also called residual terms (from residuum: the rest) summarize all what is not known and cannot be explained by the exogenous/explanatory variables:

Scio nescio (I know that I do not know)

possible reasons for ϵ_{k} :

- model does not include all relevant exogenous variables (watch out for bias!)
- all relevant factors are there but are not bundled to appropriate linear factors (e.g., explaining the fuel consumption by a linear function of the speed)
- the data used for model calibration contain errors
- in case of human decisions:

$$
\text { man } \neq \text { machine } ; \quad \text { homo } \neq \text { homo oeconomicus }
$$

Example mode choice: we ignored the weather or the additional utility to stop by at a bakery (not provided by public transport), or need of a certain mode (car) for subsequent trips of that day

1.5.3 Random terms

The random terms ϵ_{k}, also called residual terms (from residuum: the rest) summarize all what is not known and cannot be explained by the exogenous/explanatory variables:

Scio nescio (I know that I do not know)

possible reasons for ϵ_{k} :

- model does not include all relevant exogenous variables (watch out for bias!)
- all relevant factors are there but are not bundled to appropriate linear factors (e.g., explaining the fuel consumption by a linear function of the speed)
- the data used for model calibration contain errors
- in case of human decisions:

$$
\text { man } \neq \text { machine } ; \quad \text { homo } \neq \text { homo oeconomicus }
$$

Example mode choice: we ignored the weather or the additional utility to stop by at a bakery (not provided by public transport), or need of a certain mode (car) for subsequent trips of that day

Model parameters

The model parameters $\beta_{j}, j=0, \ldots, J$ tune the model to fit the data

- The parameters are determined by fitting the model to learning data sets, a process called calibration

To test the explanatory/prediction power of a model, the calibrated model is applied to test data sets with known output, a process called validation

Model parameters

The model parameters $\beta_{j}, j=0, \ldots, J$ tune the model to fit the data

- The parameters are determined by fitting the model to learning data sets, a process called calibration
\rightarrow To test the explanatory/prediction power of a model, the calibrated model is applied to test data sets with known output, a process called validation
- In contrast to the exogenous variables changing from application to application, the parameters are fixed after calibration

Model parameters

The model parameters $\beta_{j}, j=0, \ldots, J$ tune the model to fit the data

- The parameters are determined by fitting the model to learning data sets, a process called calibration
- To test the explanatory/prediction power of a model, the calibrated model is applied to test data sets with known output, a process called validation
$>$ In contrast to the exogenous variables changing from application to application, the parameters are fixed after calibration.

Model parameters

The model parameters $\beta_{j}, j=0, \ldots, J$ tune the model to fit the data

- The parameters are determined by fitting the model to learning data sets, a process called calibration
- To test the explanatory/prediction power of a model, the calibrated model is applied to test data sets with known output, a process called validation
- In contrast to the exogenous variables changing from application to application, the parameters are fixed after calibration.

The existence of well validated models is the raison d'être
for econometrics as such

Model parameters

The model parameters $\beta_{j}, j=0, \ldots, J$ tune the model to fit the data

- The parameters are determined by fitting the model to learning data sets, a process called calibration
- To test the explanatory/prediction power of a model, the calibrated model is applied to test data sets with known output, a process called validation
- In contrast to the exogenous variables changing from application to application, the parameters are fixed after calibration.

The existence of well validated models is the raison d' être for econometrics as such

Example mode choice: Parameters characterize, e.g., the monetary value of time (VoT) in $€ / \mathrm{h}$

Model parameters

The model parameters $\beta_{j}, j=0, \ldots, J$ tune the model to fit the data

- The parameters are determined by fitting the model to learning data sets, a process called calibration
- To test the explanatory/prediction power of a model, the calibrated model is applied to test data sets with known output, a process called validation
- In contrast to the exogenous variables changing from application to application, the parameters are fixed after calibration.

The existence of well validated models is the raison d' être for econometrics as such

Example mode choice: Parameters characterize, e.g., the monetary value of time (VoT) in $€ / \mathrm{h}$

Model functions

The model function is a mathematical representation of the economic process under investigation. The model's mathematical structure must reflect reality as well as possible:

- linear vs. nonlinear
\rightarrow deterministic vs. stochastic

Model functions

The model function is a mathematical representation of the economic process under investigation. The model's mathematical structure must reflect reality as well as possible:

- linear vs. nonlinear
- deterministic vs. stochastic
- single or multiple equations that may be linked, chained, or with feedback

Model functions

The model function is a mathematical representation of the economic process under investigation. The model's mathematical structure must reflect reality as well as possible:

- linear vs. nonlinear
- deterministic vs. stochastic
- single or multiple equations that may be linked, chained, or with feedback
which exogenous variables are relevant?

Model functions

The model function is a mathematical representation of the economic process under investigation. The model's mathematical structure must reflect reality as well as possible:

- linear vs. nonlinear
- deterministic vs. stochastic
- single or multiple equations that may be linked, chained, or with feedback
- which exogenous variables are relevant?

The model structure defines the qualitative aspects and the
modal naramentere the errantitatiom asmenates of whbuteruer is
to be investigated

Model functions

The model function is a mathematical representation of the economic process under investigation. The model's mathematical structure must reflect reality as well as possible:

- linear vs. nonlinear
- deterministic vs. stochastic
- single or multiple equations that may be linked, chained, or with feedback
- which exogenous variables are relevant?

The model structure defines the qualitative aspects and the
model parameters the quantitative aspects of whatever is
to be investigated
\qquad
\qquad

Model functions

The model function is a mathematical representation of the economic process under investigation. The model's mathematical structure must reflect reality as well as possible:

- linear vs. nonlinear
- deterministic vs. stochastic
- single or multiple equations that may be linked, chained, or with feedback
- which exogenous variables are relevant?

The model structure defines the qualitative aspects and the model parameters the quantitative aspects of whatever is to be investigated

Model functions

The model function is a mathematical representation of the economic process under investigation. The model's mathematical structure must reflect reality as well as possible:

- linear vs. nonlinear
- deterministic vs. stochastic
- single or multiple equations that may be linked, chained, or with feedback
- which exogenous variables are relevant?

The model structure defines the qualitative aspects and the model parameters the quantitative aspects of whatever is to be investigated

Make it as simple as possible but not simpler (Einstein)

Mathematical structure I: linear vs. nonlinear

Four steps from linearity to nonlinearity:

1. Truly linear models:

$$
Y=\hat{y}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon=\sum_{j=0}^{J} \beta_{j} \tilde{x}_{j}+\epsilon=\boldsymbol{\beta}^{\prime} \tilde{\boldsymbol{x}}+\epsilon
$$

Because of linearity, each endogenous variables has its own uncoupled single equation, so it is enough to consider a single component.

Parameter-linear (quasi-linear) models

If it is reasonable to assume fixed (generally nonlinear) functions $x_{j}=g_{j}(\tilde{\boldsymbol{x}})$, we have a linear model with the factors x_{i} becoming the "new" exogenous variables

Mathematical structure I: linear vs. nonlinear

Four steps from linearity to nonlinearity:

1. Truly linear models:

$$
Y=\hat{y}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon=\sum_{j=0}^{J} \beta_{j} \tilde{x}_{j}+\epsilon=\boldsymbol{\beta}^{\prime} \tilde{\boldsymbol{x}}+\epsilon
$$

Because of linearity, each endogenous variables has its own uncoupled single equation, so it is enough to consider a single component.
2. Parameter-linear (quasi-linear) models

$$
Y=\hat{y}(\tilde{\boldsymbol{x}}, \boldsymbol{\beta})+\epsilon=\sum_{j=0}^{J} \beta_{j} g_{j}(\tilde{\boldsymbol{x}})+\epsilon=\sum_{j=0}^{J} \beta_{j} x_{j}+\epsilon=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon
$$

If it is reasonable to assume fixed (generally nonlinear) functions $x_{j}=g_{j}(\tilde{\boldsymbol{x}})$, we have a linear model with the factors x_{j} becoming the "new" exogenous variables

Example: average distance travelled in vehicles per year

- y : distance [km/year] (deterministic because of "average")

- \tilde{x}_{1} : income $[€ /$ year $]$

Example: average distance travelled in vehicles per year

- y : distance [km/year] (deterministic because of "average")
- \tilde{x}_{1} : income $[€ /$ year $]$

- \tilde{x}_{2} : fuel cost $[€ /$ liter

\rightarrow Two exogenous variables $\rightarrow 4$ factors

Example: average distance travelled in vehicles per year

- y : distance [km/year] (deterministic because of "average")
- \tilde{x}_{1} : income $[€ /$ year]
- \tilde{x}_{2} : fuel cost $[€ /$ liter $]$
\rightarrow Two exogenous variables $\rightarrow 4$ factors:
$g_{0}(\tilde{\boldsymbol{x}})=1, g_{1}(\tilde{\boldsymbol{x}})=\tilde{x}_{1}, g_{2}(\tilde{\boldsymbol{x}})=\tilde{x}_{2}, g_{3}(\tilde{\boldsymbol{x}})=\tilde{x}_{1} \tilde{x}_{2}$,

> Model:

Example: average distance travelled in vehicles per year

- y : distance $[\mathrm{km} /$ year] (deterministic because of "average")
- \tilde{x}_{1} : income [$€ /$ year]
- \tilde{x}_{2} : fuel cost [$€ /$ liter]
- Two exogenous variables $\rightarrow 4$ factors:
$g_{0}(\tilde{\boldsymbol{x}})=1, g_{1}(\tilde{\boldsymbol{x}})=\tilde{x}_{1}, g_{2}(\tilde{\boldsymbol{x}})=\tilde{x}_{2}, g_{3}(\tilde{\boldsymbol{x}})=\tilde{x}_{1} \tilde{x}_{2}$,

Model:

Example: average distance travelled in vehicles per year

- y : distance [km/year] (deterministic because of "average")
- \tilde{x}_{1} : income [$€ /$ year]
- \tilde{x}_{2} : fuel cost [$€ /$ liter]
- Two exogenous variables $\rightarrow 4$ factors:
$g_{0}(\tilde{\boldsymbol{x}})=1, g_{1}(\tilde{\boldsymbol{x}})=\tilde{x}_{1}, g_{2}(\tilde{\boldsymbol{x}})=\tilde{x}_{2}, g_{3}(\tilde{\boldsymbol{x}})=\tilde{x}_{1} \tilde{x}_{2}$,

$$
\text { Model: } \quad y=\beta_{0}+\beta_{1} \tilde{x}_{1}+\beta_{2} \tilde{x}_{2}+\beta_{3} \tilde{x}_{1} \tilde{x}_{2}=\sum_{j=0}^{3} \beta_{j} x_{j}
$$

Example: average distance travelled in vehicles per year

- y : distance [km/year] (deterministic because of "average")
- \tilde{x}_{1} : income $[€ /$ year]
- \tilde{x}_{2} : fuel cost [$€ /$ liter]
- Two exogenous variables $\rightarrow 4$ factors:
$g_{0}(\tilde{\boldsymbol{x}})=1, g_{1}(\tilde{\boldsymbol{x}})=\tilde{x}_{1}, g_{2}(\tilde{\boldsymbol{x}})=\tilde{x}_{2}, g_{3}(\tilde{\boldsymbol{x}})=\tilde{x}_{1} \tilde{x}_{2}$,

$$
\text { Model: } \quad y=\beta_{0}+\beta_{1} \tilde{x}_{1}+\beta_{2} \tilde{x}_{2}+\beta_{3} \tilde{x}_{1} \tilde{x}_{2}=\sum_{j=0}^{3} \beta_{j} x_{j}
$$

? Discuss the elasticity $\epsilon_{2}=\frac{\bar{x}_{2}}{\bar{y}} \frac{\mathrm{~d} y}{\mathrm{~d} x_{2}}=\frac{\beta_{2} \bar{x}_{2}}{y}=-0.15$

Example: average distance travelled in vehicles per year

- y : distance [km/year] (deterministic because of "average")
- \tilde{x}_{1} : income $[€ /$ year]
- \tilde{x}_{2} : fuel cost [$€ /$ liter]
- Two exogenous variables $\rightarrow 4$ factors:
$g_{0}(\tilde{\boldsymbol{x}})=1, g_{1}(\tilde{\boldsymbol{x}})=\tilde{x}_{1}, g_{2}(\tilde{\boldsymbol{x}})=\tilde{x}_{2}, g_{3}(\tilde{\boldsymbol{x}})=\tilde{x}_{1} \tilde{x}_{2}$,

$$
\text { Model: } \quad y=\beta_{0}+\beta_{1} \tilde{x}_{1}+\beta_{2} \tilde{x}_{2}+\beta_{3} \tilde{x}_{1} \tilde{x}_{2}=\sum_{j=0}^{3} \beta_{j} x_{j}
$$

? Discuss the elasticity $\epsilon_{2}=\frac{\bar{x}_{2}}{\bar{y}} \frac{\mathrm{~d} y}{\mathrm{~d} x_{2}}=\frac{\beta_{2} \bar{x}_{2}}{y}=-0.15$
! 0.15% decrease in kilometrage per increase of the fuel costs by 1%

Example: average distance travelled in vehicles per year

- y : distance $[\mathrm{km} /$ year] (deterministic because of "average")
- \tilde{x}_{1} : income $[€ /$ year $]$
- \tilde{x}_{2} : fuel cost [$€ /$ liter]
- Two exogenous variables $\rightarrow 4$ factors:
$g_{0}(\tilde{\boldsymbol{x}})=1, g_{1}(\tilde{\boldsymbol{x}})=\tilde{x}_{1}, g_{2}(\tilde{\boldsymbol{x}})=\tilde{x}_{2}, g_{3}(\tilde{\boldsymbol{x}})=\tilde{x}_{1} \tilde{x}_{2}$,

$$
\text { Model: } \quad y=\beta_{0}+\beta_{1} \tilde{x}_{1}+\beta_{2} \tilde{x}_{2}+\beta_{3} \tilde{x}_{1} \tilde{x}_{2}=\sum_{j=0}^{3} \beta_{j} x_{j}
$$

? Discuss the elasticity $\epsilon_{2}=\frac{\bar{x}_{2}}{\bar{y}} \frac{\mathrm{~d} y}{\mathrm{~d} x_{2}}=\frac{\beta_{2} \bar{x}_{2}}{y}=-0.15$
! 0.15% decrease in kilometrage per increase of the fuel costs by 1%
? Discuss the meaning of the factors, particularly the product x_{3}

Example: average distance travelled in vehicles per year

- y : distance $[\mathrm{km} /$ year] (deterministic because of "average")
- \tilde{x}_{1} : income $[€ /$ year $]$
- \tilde{x}_{2} : fuel cost [€/liter]
- Two exogenous variables $\rightarrow 4$ factors:
$g_{0}(\tilde{\boldsymbol{x}})=1, g_{1}(\tilde{\boldsymbol{x}})=\tilde{x}_{1}, g_{2}(\tilde{\boldsymbol{x}})=\tilde{x}_{2}, g_{3}(\tilde{\boldsymbol{x}})=\tilde{x}_{1} \tilde{x}_{2}$,

$$
\text { Model: } \quad y=\beta_{0}+\beta_{1} \tilde{x}_{1}+\beta_{2} \tilde{x}_{2}+\beta_{3} \tilde{x}_{1} \tilde{x}_{2}=\sum_{j=0}^{3} \beta_{j} x_{j}
$$

? Discuss the elasticity $\epsilon_{2}=\frac{\bar{x}_{2}}{\bar{y}} \frac{\mathrm{~d} y}{\mathrm{~d} x_{2}}=\frac{\beta_{2} \bar{x}_{2}}{y}=-0.15$
! 0.15% decrease in kilometrage per increase of the fuel costs by 1%
? Discuss the meaning of the factors, particularly the product x_{3}
! $x_{0}=1$: constant; $x_{1}=\tilde{x}_{1}$: increase with income $\left(\beta_{1}>0\right) ; x_{2}=\tilde{x}_{2}$: price sensitivity $\left(\beta_{2}<0\right)$; $x_{3}=\tilde{x}_{1} \tilde{x}_{2}$: increase of price sensitivity (becoming less negative) with increasing income ($\beta_{3}>0$)

Mathematical structure I: linear vs. nonlinear 3

3. Nonlinear models that can be linearized

Classical example: unlimited growth

$$
G(t)=G_{0} e^{t / \tau+\epsilon}
$$

- endogenous variable G : growth measure, e.g., company size, \#items sold of a newly introduced product

Mathematical structure I: linear vs. nonlinear 3

3. Nonlinear models that can be linearized

Classical example: unlimited growth

$$
G(t)=G_{0} e^{t / \tau+\epsilon}
$$

- endogenous variable G : growth measure, e.g., company size, \#items sold of a newly introduced product
- exogenous variable t : time
- parameter G_{0} : initial growth measure
\rightarrow parameter τ : time for growing by a factor of $e=2.71$

Mathematical structure I: linear vs. nonlinear 3

3. Nonlinear models that can be linearized

Classical example: unlimited growth

$$
G(t)=G_{0} e^{t / \tau+\epsilon}
$$

- endogenous variable G : growth measure, e.g., company size, \#items sold of a newly introduced product
- exogenous variable t : time
\rightarrow parameter G_{0} : initial growth measure
\rightarrow parameter τ : time for growing by a factor of $e=2.71$
- random multiplicative factor

Mathematical structure I: linear vs. nonlinear 3

3. Nonlinear models that can be linearized

Classical example: unlimited growth

$$
G(t)=G_{0} e^{t / \tau+\epsilon}
$$

- endogenous variable G : growth measure, e.g., company size, \#items sold of a newly introduced product
- exogenous variable t : time
- parameter G_{0} : initial growth measure
- parameter τ : time for growing by a factor of $e=2.71 \ldots$

[^0]
Mathematical structure I: linear vs. nonlinear 3

3. Nonlinear models that can be linearized

Classical example: unlimited growth

$$
G(t)=G_{0} e^{t / \tau+\epsilon}
$$

- endogenous variable G : growth measure, e.g., company size, \#items sold of a newly introduced product
- exogenous variable t : time
- parameter G_{0} : initial growth measure
- parameter τ : time for growing by a factor of $e=2.71 \ldots$
- random multiplicative factor e^{ϵ}

Linearisation:
Reformulation by setting
Standard form:

Mathematical structure I: linear vs. nonlinear 3

3. Nonlinear models that can be linearized

Classical example: unlimited growth

$$
G(t)=G_{0} e^{t / \tau+\epsilon}
$$

- endogenous variable G : growth measure, e.g., company size, \#items sold of a newly introduced product
- exogenous variable t : time
- parameter G_{0} : initial growth measure
- parameter τ : time for growing by a factor of $e=2.71 \ldots$
- random multiplicative factor e^{ϵ}

$$
\text { Linearisation: } \quad Y(t)=\ln G(t)=\ln G_{0}+\frac{t}{\tau}+\epsilon
$$

Reformulation by setting $x_{0}=1, x_{1}=t, \beta_{0}=\ln G_{0}, \beta_{1}=1 / \tau$.

Mathematical structure I: linear vs. nonlinear 3

3. Nonlinear models that can be linearized

Classical example: unlimited growth

$$
G(t)=G_{0} e^{t / \tau+\epsilon}
$$

- endogenous variable G : growth measure, e.g., company size, \#items sold of a newly introduced product
- exogenous variable t : time
- parameter G_{0} : initial growth measure
- parameter τ : time for growing by a factor of $e=2.71 \ldots$
- random multiplicative factor e^{ϵ}

$$
\text { Linearisation: } \quad Y(t)=\ln G(t)=\ln G_{0}+\frac{t}{\tau}+\epsilon
$$

Reformulation by setting $x_{0}=1, x_{1}=t, \beta_{0}=\ln G_{0}, \beta_{1}=1 / \tau$:
Standard form: $Y(\boldsymbol{x})=\boldsymbol{\beta}^{\prime} \boldsymbol{x}+\epsilon$

30,000.00

25,000.00

20,000.00

15,000.00

10,000.00

100,000

10,000

Mathematical structure I: linear vs. nonlinear 4

4. Irreducibly nonlinear models Classical example: limited growth

$$
y(t)=\frac{y_{s}}{1+\left(y_{s} / y_{0}-1\right) e^{-t / \tau}}
$$

- Solution of the ODE
 for the initial value

Mathematical structure I: linear vs. nonlinear 4

4. Irreducibly nonlinear models Classical example: limited growth

$$
y(t)=\frac{y_{s}}{1+\left(y_{s} / y_{0}-1\right) e^{-t / \tau}}
$$

- Solution of the ODE
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{y(t)}{\tau}\left(1-\frac{y(t)}{y_{s}}\right)$ for the initial value
$y\left(t_{0}\right)=y_{0}$
\rightarrow Plot for $t_{0}=1950, y_{0}=3 \%, y_{s}=60 \%$, and $\tau=10$ years

Mathematical structure I: linear vs. nonlinear 4

4. Irreducibly nonlinear models Classical example: limited growth

$$
y(t)=\frac{y_{s}}{1+\left(y_{s} / y_{0}-1\right) e^{-t / \tau}}
$$

- Solution of the ODE $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{y(t)}{\tau}\left(1-\frac{y(t)}{y_{s}}\right)$ for the initial value $y\left(t_{0}\right)=y_{0}$
- Plot for $t_{0}=1950, y_{0}=3 \%, y_{s}=60 \%$, and $\tau=10$ years

Mathematical structure I: linear vs. nonlinear 4

4. Irreducibly nonlinear models Classical example: limited growth

$$
y(t)=\frac{y_{s}}{1+\left(y_{s} / y_{0}-1\right) e^{-t / \tau}}
$$

- Solution of the ODE $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{y(t)}{\tau}\left(1-\frac{y(t)}{y_{s}}\right)$ for the initial value $y\left(t_{0}\right)=y_{0}$
- Plot for $t_{0}=1950, y_{0}=3 \%, y_{s}=60 \%$, and $\tau=10$ years
? What might this represent?

Mathematical structure I: linear vs. nonlinear 4

4. Irreducibly nonlinear models Classical example: limited growth

$$
y(t)=\frac{y_{s}}{1+\left(y_{s} / y_{0}-1\right) e^{-t / \tau}}
$$

- Solution of the ODE $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{y(t)}{\tau}\left(1-\frac{y(t)}{y_{s}}\right)$ for the initial value $y\left(t_{0}\right)=y_{0}$
- Plot for $t_{0}=1950, y_{0}=3 \%, y_{s}=60 \%$, and $\tau=10$ years
? What might this represent?
! For example, the penetration rate for passenge
 cars per person.

Actual example: Corona simulation

Simplest macroscopic SI (susceptible-infected) model:
$y(t+\tau)=y(t)+R_{0} y(t)(1-y(t)) \rightarrow$ same model as above \Rightarrow Lecture 01a

Mathematical structure II: Other criteria

- deterministic vs. stochastic models
- \#exogenous variables: 1: univariate; ≥ 2 multivariate models
\#endogenous variables: single- vs. multi-equation models

Mathematical structure II: Other criteria

- deterministic vs. stochastic models
- \#exogenous variables: 1: univariate; ≥ 2 multivariate models
- \#endogenous variables: single- vs. multi-equation models

Scaling of the endogenous variables: real-valued \rightarrow regression models; discrete discrete choice models

Mathematical structure II: Other criteria

- deterministic vs. stochastic models
- \#exogenous variables: 1: univariate; ≥ 2 multivariate models
- \#endogenous variables: single- vs. multi-equation models
- Scaling of the endogenous variables: real-valued \rightarrow regression models; discrete \rightarrow discrete choice models
$>$ Linking, chaining, and feedback

Mathematical structure II: Other criteria

- deterministic vs. stochastic models
- \#exogenous variables: 1: univariate; ≥ 2 multivariate models
- \#endogenous variables: single- vs. multi-equation models
- Scaling of the endogenous variables: real-valued \rightarrow regression models; discrete \rightarrow discrete choice models
- Linking, chaining, and feedback

Mathematical structure II: Other criteria

- deterministic vs. stochastic models
- \#exogenous variables: 1: univariate; ≥ 2 multivariate models
- \#endogenous variables: single- vs. multi-equation models
- Scaling of the endogenous variables: real-valued \rightarrow regression models; discrete \rightarrow discrete choice models
- Linking, chaining, and feedback

Linking

One or more endogenous variables of a model equation serve as exogenous variables of other model equations

Chaining

The endogenous variables of Model 1 serve as exogenous variables of Model 2
\rightarrow Special case of chaining: time evolution: the endogenous variables at time t are the exogenous variables at the next time sten $t+\Delta t$
\Rightarrow The model itself is generally the same in all steps (autonomous model)

Chaining

The endogenous variables of Model 1 serve as exogenous variables of Model 2

- Special case of chaining: time evolution: the endogenous variables at time t are the exogenous variables at the next time step $t+\Delta t$
- The model itself is generally the same in all steps (autonomous model)

Feedback

Combination of chaining and linking

Complex example: Four-Step Model of transportation planning

[^0]: - random multiplicative factor

