Methods in Transportation Econometrics and Statistics (Master)

Winter semester 2023/24, Solutions to Tutorial No. 12

Solution to Problem 12.1: Econometric Input-Output-Model (IOM)

(a) Diagram of flows:

The total outputs are given by the problem statement:

$$
X_{1}=500 \mathrm{kWh}=125 €, \quad X_{2}=200 € .
$$

In order to ensure the steady stated in machine and electricity production, the inter-sectoral flows must satisfy (see problem statement)

$$
\begin{aligned}
& X_{11}=0.1 * 500 \mathrm{kWh}=50 \mathrm{kWh}=12.5 € \\
& X_{12}=\frac{1 \mathrm{kWh}}{4 €} * 200 €=50 \mathrm{kWh}=12.5 € \\
& X_{21}=\frac{1752 €}{1 \mathrm{~kW}} * 1 \mathrm{~kW} / 87600 \mathrm{kWh} * 500 \mathrm{kWh}=10 €, \\
& X_{22}=0.05 * 200 €=10 € .
\end{aligned}
$$

(b) The external sectors and the end consumer get the difference between the total production and the intersectoral flows:

$$
Y_{i}=X_{i}-\sum_{j} X_{i j}, \text { i.e. },
$$

- Energy:
$Y_{1}=X_{1}-X_{11}-X_{12}=(500-50-50) \mathrm{kWh}=400 \mathrm{kWh}=100 €$
- Mech engineering:
$Y_{2}=X_{2}-X_{21}-X_{22}=(200-10-10) €=180 €$
(c) The IO-coefficients are obtained from the defining balance

$$
X_{i}=\sum_{j=1}^{n} X_{i j}+Y_{i}=\sum_{j=1}^{n} A_{i j} X_{j}+Y_{i}
$$

by

$$
A_{i j}=\frac{X_{i j}}{X_{j}}
$$

and, using the last results,

$$
\underline{\underline{A}}=\left(\begin{array}{ll}
\frac{12.50}{125} & \frac{12.50}{200} \tag{1}\\
\frac{10}{125} & \frac{10}{200}
\end{array}\right)=\left(\begin{array}{ll}
0.1000 & 0.0625 \\
0.0800 & 0.0500
\end{array}\right)
$$

The coefficient matrix $\underline{\underline{B}}$ of the final demand is given by

$$
\underline{\underline{B}}=(\underline{\underline{1}}-\underline{\underline{A}})^{-1} .
$$

Step by step:

$$
\underline{\underline{1}}-\underline{\underline{A}}=\left(\begin{array}{cc}
1-0.1 & 0-0.0625 \tag{2}\\
0-0.08 & 1-0.05
\end{array}\right)=\left(\begin{array}{cc}
0.9 & -0.0625 \\
-0.08 & 0.95
\end{array}\right) .
$$

and with the general 2×2 matrix inversion formula

$$
\mathbf{M}^{-1}=\frac{1}{\operatorname{det} \mathbf{M}}\left(\begin{array}{cc}
M_{22} & -M_{12} \\
-M_{21} & M_{11}
\end{array}\right)
$$

we have

$$
\operatorname{det}(\mathbf{1}-\mathbf{A})=0.85
$$

and finally

$$
\underline{\underline{B}}=(\underline{\underline{1}}-\underline{\underline{A}})^{-1}=\left(\begin{array}{cc}
1.118 & 0.0735 \\
0.0941 & 1.059
\end{array}\right)
$$

(d) We now have a sudden demand change (in €) by

$$
\Delta \vec{Y}=\binom{0}{0.11 * 180}=\binom{0}{19.8} .
$$

Because of the linearity of the model, the relation defining $\underline{\underline{B}}$ is valid for the increments as well, hence

$$
\Delta \vec{X}=\left(\begin{array}{cc}
1.118 & 0.0735 \\
0.0941 & 1.059
\end{array}\right) \cdot\binom{0}{19.8}=\binom{1.46}{20.96}
$$

With 11% or $19.80 €$ more production of machines for the external demand, the additional total production of machines is given by $20.96 €$. Furthermore, to maintain the steady state, the total energy production must raise as well by a monetary equivalent of $1.46 €$. In relative terms, this means

- a percentaged increase of total electricity production by $\Delta X_{1} / X_{1}=1.46 / 125=$ 1.17%,
- a percentaged increase of machine production by $\Delta X_{2} / X_{2}=20.96 / 200=10.48 \%$.

Although the external demand for energy does not increase, the energy production must increase to keep the steady state since some of the energy is needed to produce the additional machines for the external demand and the risen inter-sectoral demand.

