# Methods in Transportation Econometrics and Statistics (Master) 

## Winter semester 2023/24, Tutorial No. 9

## Problem 9.1: Estimation of trivial and AC-only models

(a) Show that, for the trivial utility function $V_{n i}=0$, the binomial Logit and Probit trivial models have a choice probability of $P_{1}=P_{2}=1 / 2$. Generalize this result to the MNL.
(b) Show that, for general discrete-choice models with the likelihood function

$$
\begin{equation*}
\ln L(\vec{\beta})=\sum_{n=1}^{N} \sum_{i=1}^{I} y_{n i} \ln P_{n i}(\vec{\beta}), \tag{1}
\end{equation*}
$$

i.e., independent decisions 1 , the ML estimation of the AC0-only model $V_{n i}=\sum_{m=1}^{I-1} \beta_{m} \delta_{m i}$ leads to estimated probabilities

$$
\hat{P}_{i}=\frac{N_{i}}{N}, \quad N_{i}=\sum_{n} y_{n i}
$$

i.e., the probabilities are equal to the percentaged total choice number for a certain alternative $i$. Hint: Lagrange multipliers. Also use Lagrange mutlipliers to show that, for general trivial models with Log-likelihoods according to (1) (i.e., uncorrelated random utilities), the calibrated choice probabilities are given by $P_{i}=1 / I$. Finally show that, for the binary logit model with $V_{n i}=\beta_{1} \delta_{i 1}$, the ML estimation of the parameter itself is given by

$$
\hat{\beta}_{1}=\ln \left(\frac{N}{N_{i}}-1\right) .
$$

## Problem 9.2: Considerations of a car salesman

A car salesman takes much effort in customer service and free test drives with new cars although most customers will not eventually buy a car. Sometimes, he has the impression that people just want to test the newest models for free. In order to concentrate on people seriously interested in buying a new car, he shrewdly obtained, during the negotiations, the age of the customer's present car (if any) and whether it has been bought as a new or used car. Furthermore, he records the discounts offered to each customer and whether the negotiations were successful.

[^0]| Age of present car (years) | 1 | 3 | 5 | 7 | 10 | 5 | 8 | 10 | 12 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Discount $(1000 €)$ | 1 | 2 | 3 | 1 | 0 | 3 | 2 | 2 | 1 | 3 |
| Present car bought new $(0=\mathrm{N}, 1=\mathrm{Y})$ | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| Successful deal $(0=\mathrm{N}, 1=\mathrm{Y})$ | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |

The data are analyzed with a binomial Logit model specified as

$$
V_{n i}=\beta_{1} \delta_{i 1}+\beta_{2} T_{n} \delta_{i 1}+\beta_{3} R_{n} \delta_{i 1}+\beta_{4} \delta_{i 1} \begin{cases}1 & \text { present car bought new } \\ 0 & \text { others }\end{cases}
$$

where $i=1(2)$ denotes a successful (unsuccessful) deal, respectively, $T_{n}$ is the age of the present car (assuming there is one), and $R_{n}$ is the discount offered (in $1000 €$ ).
(a) Is this a stated or revealed-choice query?
(b) Enumerate all characteristica, socio-economic variables, and ACs.
(c) Discuss if the model is well specified for a generic instead of an alternativ-specific ansatz for the present car age, i.e., the relevant factor is given by $\Delta V_{n i}=\beta_{2} T_{n}$ instead of $\beta_{2} T_{n} \delta_{i 1}$.
(d) (i) Give general expressions for the four realized and modelled property sums which must be equal after a ML estimation
(ii) Give the numerical values for the realized property sums $X_{m}^{\text {data }}$ and the property sums $X_{m}^{\text {mod }}$ estimated from the Logit model with $\vec{\beta}=\overrightarrow{0}$.
(e) The ML estimation resulted in

$$
\hat{\vec{\beta}}=(-9.2,0.35,2.2,1.3)^{\prime}
$$

Explain/justify why $\hat{\beta}_{1}$ takes on such a negative value.
(f) A new customer already has a five-year old car then bought as a new car. The salesman offers a final discount of $2000 €$. Give the probability that the customer will make the deal (buy a new car).
(g) In the present specification, customers having no present car cannot be included (why?). Generalize the model specification to include customers potentially buying his/her first car.


[^0]:    ${ }^{1}$ Within the alternatives, the random utilities (RUs) need not to be i.i.d. or even uncorrelated. However, for highly heteroskedastic and/or corrrelated RUs, the calibrated choice probabilities may not be accessible in some cases, i.e., there are no parameter values to reach them.

