

Methods in Transportation Econometrics and Statistics (Master)

Winter semester 2023/24, Tutorial No. 7

Problem 7.1: Choice probabilities in trinomial Logit and i.i.d. Probit models

A trip to a certain destination takes $T_1 = 40 \text{ min}$ by foot, $T_2 = 15 \text{ min}$ by bike, and $T_3 = 15 \text{ min}$ when using public transport (PT). Additionally, using PT implies ad-hoc costs of C_3 . The deterministic utilities are given by

$$V_i = \beta_1 \delta_{i1} + \beta_2 \delta_{i2} + \beta_3 T_i + \beta_4 C_i$$

with following parameter values for the MNL: $\hat{\beta}_1 = -1, \hat{\beta}_2 = -2, \hat{\beta}_3 = -0.1, \hat{\beta}_4 = -1.$

- (a) Which is the reference alternative for the ACs? Give the meaning of β_1 and β_2 . Give the ansatz (generic or alternative-specific?) used to model the travel times.
- (b) Give the utility unit (UU) in terms of time differences and ad-hoc costs and derive the implied value of time (VoT)
- (c) Calculate the MNL choice probabilities analytically.

- (d) Now use the i.i.d. multinomial-Probit model (MNP) assuming that all Logit parameters (and also the Logit utilities V_i) are multiplied by $\sqrt{6}/\pi$ reflecting the standard deviation of the standard-normal random utility $\sqrt{V(\epsilon)} = 1$ instead of $\pi/\sqrt{6}$ for the MNL. Read off the choice probability P_1 of the i.i.d. multinomial-Probit model (MNP) from the contour plot and the other probabilities by the relations $P_2(V_1 V_3, V_2 V_3) = P_1(V_2 V_3, V_1 V_3)$ und $P_3 = 1 P_1 P_2$.
- (e) Discuss the small differences between the MNL and MNP probabilities.
- (f) By some political initiative, PT is now freely available for all. Show that, in the MNL, some decision makers switch to the PT such that the relative attractivity P_1/P_2 remains constant (IIA property) while this is not the case for the MNP.

Problem 7.2: Revealed choice: survey in the audience

A survey among the students about the realized mode decision on the way to this lecture gives the following data:

Klasse	i = 1 (ped)	i = 2 (bike)	i = 3 (PT)	$i = 4 \ (car)$
n = 1: 0-2 km, no bike availability	2	_	3	1
n = 2: 0-2 km, bike available	1	5	1	0
n = 3: 2-6 km, no bike availability	1	—	2	1
n = 4: 2-6 km, bike available	0	7	6	0
n = 5: 6-10 km	0	2	8	3
n = 6: 10-20 km	0	0	1	5

As only socioeconomic variable, the bike availability was recorded. Furthermore, the values of the only exogenous variable (distance) have been agggregated into classes.¹ The choice is modelled with the MNL specified as

$$V_{ni}(\vec{\beta}) = \beta_1 r_n \delta_{i1} + \beta_2 r_n \delta_{i2} + \beta_3 r_n \delta_{i3} + \beta_4 \delta_{i1} + \beta_5 \delta_{i2} + \beta_6 \delta_{i3} + V_{ni}^{\text{bike}}, \tag{1}$$

where r_i denotes the distance for person group n in kilometers, and the selector-dummy $\delta_{ij} = 1$ for i = j and = 0, otherwise.

- (a) Give the meaning of the parameters β_4 to β_6 . Why would an additional factor $\beta_7 \delta_{i4}$ lead to a mis-specification?
- (b) Give a parameter-free expression for V_{ni}^{bike} such that the bike mode can only be chosen if one is available.
- (c) Show that Expressions (1) can be interpreted as a nonlinear function for the total travel time $T_4 T_1$ where the total travel times T_i are of the form

$$V_{ni} = -T_{ni} = -\left(T_i^{(0)} + \frac{r_n}{v_i}\right).$$

Identify the parameters β_1 to β_6 with functions of the setup times $T_i^{(0)}$ and speeds v_i . *Hint:* Notice that $V_4 = 0$, i.e., the reference alternative. Therefore, you need to formulate the utility differences $V_1 - V_4$ in terms of the travel times.

¹In a real investigation, every person is asked individually, so this would not be necessary.