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12.1 General Problem Setting

I Models for fuel consumption, CO2, and other emissions (NOx, particulate matter)
have the same structure, so all emission factors can be discussed together

I Strict proportionality between fuel consumption and CO2 emissions:
I Gasoline (98 ROZ): 2.39 kg CO2/liter
I Diesel fuel: 2.69 kg CO2/liter
I The difference is mainly due to the different specific masses. Essentially, one carbon

atom (12 au) produces one CO2 molecule (44 au), so the mass ratio is about 44/12

I The output can be either local emission factors (per distance, e.g.liters/100 km) or
instantaneous factors, e.g., liters/h. (Always use SI in simulations!)

I Input may be on the link level (not considered here) or local level

I As for traffic flow dynamics, local fuel/emission models can be macroscopic or
microscopic

I We will concentrate on microscopic models
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Fuel/emissions model overview
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12.2 Speed-Profile Emission Models

The input of speed-profile models, also known as cycle-variable models, are speed
profiles of single vehicles from floating-car data, trajectory data, test cycles, or by a
microscopic traffic flow simulation together with vehicle attributes. The output are
emissions/emission factors during the duration of the speed profile

I In contrast to modal models, the speed profile is not used directly but aggregated
into several speed profile factors x

I Most approaches use multivariate linear models for estimating the instantaneous
emission vector e:

e = L · x

I The matrix components Lnm (to be calibrated) describe the influence of speed profile
factor m on emission type n

I Speed-profile factors xm: fraction of time in a speed class, acceleration standard
deviation, ...

I Emission factors: en: CO2, NOx, PM, ...
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Some speed-profile factors

Factor Effect on CO2 emissions

Constant of value 1 intercept (+++)
Fraction of time in speed class 0-25 km/h ++
Fraction of time in speed class 50-75 km/h – –
Fraction of time in speed class 75-100 km/h –
Fraction of time in speed class > 125 km/h ++
Standard deviation of speed +
Average and standard deviation of acceleration +
Average and standard deviation of deceleration –
Frequency of acceleration-deceleration cycles +
Fraction of time the vehicle is standing +
Fraction of time the vehicle needs power near its maximum power ++
Fraction of road gradients greater than 5 % +
Engine speed (crankshaft revolution rate) 1 000 - 2 000 rpm – –
Engine speed (crankshaft revolution rate) > 3 500 rpm ++
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12.3 Modal Emission Models

As speed-profile models, modal emission models make use of trajectory information but
they use them instantaneously and directly: the emission rate is an instantaneous function
of the mode of vehicle operation: speed, acceleration, road gradient etc

I In the more refined modal models, the vehicle operation mode is complemented by a
characteristic map describing the instantaneous operating mode of the engine in
form of fuel and emission rates.

I Depending on the model complexity, further input is necessary including altitude, air
temperature, and variables related to the engine history (e.g., engine temperature)

I Perfectly suited to microscopic traffic flow models

I Output: The rates ėn of the emission factors (ė1: fuel consumption/CO2 emission
rate, ...)

I Two conceptional types: phenomenological models and physics-based models
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Variants of modal emission models

Phenomenological models

I Statistical modal models are based on regression including phenomenological
interaction terms as factors. For example, for Ċ = ė1

Ċ = max
(
0, β0 + β1v + β2v

2 + β3v
3 + β4vv̇ + β5v

2v̇ + ...
)
.

I Map-based models. These are based on lookup-tables obtained from real driving
experiments (f : engine speed):

Ċ = f(v, v̇, f)

I Parameter-free but the driving experiments to generate the lookup tables are very
cumpersome

I No transfer/generalisation ability. Each vehicle/engine combination needs its own
lookup table

Physics-based models are based on first principles ⇒ perfect generalisation ability, even
to battery-electric vehicles. Two types:

I purely analytical

I hybrid with an engine characteristic map: lookup table generated on test benches
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12.4 A Physics-Based Modal Consumption Model
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Driving resistance

F (v, v̇, φ) = mdynv̇ + (µ+ φ)mg +
1

2
cdρAv

2

I Inertial force mdynv̇ with the dynamical mass mdyn (static mass m + twice the ratio
between rotational energy of all rotating parts and v2, can be up to mdyn = 1.5m for
the first gear)

I Solid-state friction force mgµ (g = 9.81 m/s2, friction coefficient µ ≈ 0.015)

I Gravitational force of sloping roads mgφ with the uphill gradient φ (an
uphill/downhill road gradient of 10 % will mean φ = ±0.1)

I Wind drag 1
2cdρAv

2

I cd: drag coefficient (about 0.3 for normal cars)
I ρ: air density (about 1.3 kg/m3 at sea level)
I A: frontal cross section (about 2 m2)
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Engine/power management

Instantaneous overall power demand:
Pinst = Pdrive + P0 = F v + P0

I Pdrive = F v: power to overcome the driving resistance

I P0: power to drive all the electric appliances and to overcome internal engine friction

Several power management options:

I Old vehicles without overrun fuel cutoff:

P = P0 + max(Pdrive, 0)

I Contemporary internal combustion vehicles (ICVs) with overrun fuel cutoff:

P = max(P0 + Pdrive, 0) = max(Pinst, 0)

I Vehicles with recuperation ability including battery-electric vehicles (BEV): see
Section 12.5
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Questions

? Without engaged gear (engine idling, P0 taken from the starter or driving battery)
and without braking, a car just starts to roll on a gentle downhill slope of 1.5 % and
reaches a very slow terminal speed. Determine the friction coefficient µ

! With disengaged clutch and no brakes, no driving resistance can be sustained, so F = 0. After reaching the

slow terminal speed, v̇ = 0 and the air-drag term is negligible (because of the slow speed). So, with

φ = −0.015, we have µ+ φ = 0 or µ = −φ = 0.015

? On a 3.5 % downhill slope, the same idling car reaches a terminal speed of 108 km/h
with no brakes. Estimate its cd value for m = 1 600 kg and ρA = 2 kg/m

! We still have F = 0 and v̇ = 0, so solving the driving resistance equation for cd, we obtain

cd =
−2(µ+ φ)mg

ρAv2
=

0.04 ∗ 1 600 ∗ 9.81
2 ∗ 302

= 0.33

? How many kWh mechanical energy are needed for driving 100 km at a constant
speed of 100 km/h on a level road? (parameters as above and P0 = 2 kW)

! Just insert in any of the three power formulas (neither overrun fuel cutoff nor recuparetation relevant) ⇒
P = 15.1 kw, hence W = 15.1 kWh for the one-hour drive. Notice that, because of not perfect battery and

motor efficiencies, the energy demand for a BEV with this specification is higher, see 12.5 below
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Fuel flow and instantaneous consumption per distance unit

Specific consumption (in [kg/J] if C is measured in kg or [l/J] if C measured in liters):

Cspec =
C

Wmech

Engine efficiency with wcal: energy density (in [J/kg] if C is measured in kg, in [J/l] if C s
measured in l)

γ =
Wmech

Wchem
=
Wmech

wcalC

Relation between Cspec and efficiency:

Cspec =
1

γwcal

(How to derive this?) insert Cmech from the second formula into the first

Fuel flow rate:
Ċ = CspecP

How to derive this? just take the time derivative of the rhs. and lhs. of C = CspecW
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Characteristic engine maps

The efficiency of the internal combustion engine of ICVs is highly variable and empirically
determined as a characteristic map on engine test benches

I x axis: engine speed f , often given in rpm (rotations per minute)

I y axis: effective motor pressure p: proportional to the engine torque M on the crankshaft:

M =
pVzyl

4π

and roughly proportional to how much you push the throttle pedal

I Contour lines: specific consumption in kg/kWh or ml/kWh
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Characteristic engine maps with power as independent variable

Power for four-stroke engines with cycle time τ = 1/f : P = pVzyl/(2τ):

P (f, p) =
pVzylf

2

Setting equal P = Mω = 2πMf with the above ⇒ already mentioned torque-pressure relation:

M =
P

2πf
=
pVzylf

4π
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Efficiency maps

The contour lines for
the specific consump-
tion are simply re-
placed by efficiency
contour lines according
to

γ =
1

Cspecwcal

(wcal here related to
the volume)
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Application 1: Consumption per distance at constant speed

Fuel consumption per L = 100 km
on a level road:

CL = TĊ =
L

v
Ċ =

L

v
CspecP

= LCspec

(
P0

v
+ F

)
= LCspec

(
P0

v
+ µmg +

1

2
cdρAv

2

)
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General consumption for any vehicle state

General expression for CL including accelerations v̇, gradients α, and gears g:

CL = LCspec(f(g, v), P )
P

v
, P = P0 +mdynv̇v +mg(µ+ α)v +

1

2
cdρAv

3

The engine speed f is proportional to the vehicle speed v and the gear-specific total
transmission ratio ig between crankshaft and tyre rotation: f = igv/(2πrtyre) with ig
between about 15 (1st gear) and 3 (highest gear)
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General consumption for the fuel-optimal gear

I Generally, several gears are possible for a given vehicle speed and power-demand
combination

I In most cases, the highest possible gear is the best one.

I When needing more power at a given speed (uphill gradient, acceleration), a lower
gear is often needed, even from a consumption perspective
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Questions

? Assuming a constant specific consumption, derive the speed where a vehicle needs
the least fuel per 100 km (no gradient, constant speed)

! With constant Cspec, the consumption rate is directly proportional to the total power, Ċ ∼ P and the
consumption per distance unit proportional to

P

v
=
P0

v
+ µmg +

1

2
cdAρv

2

Calculate the argument of the minimum with respect to speed in the usual way

? Why are there gray ranges (not possible) in the maps for the fuel-optimal gear

! to much power demand or too high speed (f > fmax even for the highest gear)

? Which rule for fuel-economic driving can be derived from the maps

! The sweet spot is at a rather high effective pressure, i.e., throttle pedal pressure and a low engine speed, so

choose the highest gear possible which also means pushing more on the pedal compared to a lower gear (see

the power maps)
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12.5 Electric Vehicles

Battery-electrical vehicles (BEV) can be analyzed by the above physics-based models.
The differences are

I The engine efficiency is no longer
the ratio between mechanical and
thermal energy but between
mechanical and electrical energy

I The characteristic map is two-sided
with a nearly symmetrical generator
regime

I The motor efficiency is much higher
and nearly constant in a wide range
but there is an additional battery
efficiency for charging/discharging

I BEV have only a single gear and no
clutch (transmission ratio iel ≈ 9)
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Limits/regimes of an BEV electrical motor

I Low engine speeds: maximum
torque limited by the maximum
current of the electrical motor

I High engine speeds: maximum
power limited by motor
overheating

I maximum motor speed: limited
by the voltage and mechanical
parts

I The first two limits can be
exceeded for a short time
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Questions on a very small BEV

? Give the maximum torque, the
maximum engine speed, and the
maximum power

! Mmax = 92Nm, fmax = 9000min−1 = 150 s−1,

Pmax = 2πfmax43Nm = 40 kW

? The BEV has tyres of an effective outer
radius of rt = 30 cm and a transmission
ratio iel = 9. Give the cutoff speed
where the acceleration starts to drop
strongly, and the maximum speed

! We have v(f) = 2πftrt = 2πfrt/iel so, with a

cutoff engine speed fc = 4500/60 s−1 = 75 s−1

and fmax = 2vc = 150 s−1, we have

vc = 15.7m/s = 56 km/h and

vmax = 31.4m/s = 113 km/h.
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Questions (ctned)

? The BEV from above has
m ≈ mdyn = 1 800 kg and µ = 0.015.
The power P0 is taken directly from the
battery. Give the maximum acceleration

! The maximum acceleration is attained near zero
speed where air drag is negligible. From the power
formula we obtain

v̇ = P/(mv)− gµ

Since, for v < vc, we also have
Pmax(v) = 2πMmaxf =Mmaxielv/rt, speed cancels
out, so

v̇max =Mmaxiel/(rtm)− gµ = 1.7m/s2

The comparatively low value is due to this tiny

engine. Typically, because of the high torque Mmax

down to zero engine speed, the BEV accelerations

are comparatively high.
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Battery charge/discharge rate

BEVs take the basic power demand P0 directly from the battery instead of from the ICV
generator:

Ẇbatt =

{
−Pel
ηbatt

Pel ≥ 0

−ηbattPel Pel < 0
, Pel =

{
P0 + Pdrive

ηM
Pdrive ≥ 0

P0 + ηMPdrive Pdrive < 0

I Ẇbatt: charge/discharge rate of the battery during driving

I Pdrive: just the usual product driving force F times speed v

I ηbatt: efficiency of the battery at charging and discharging

I ηM: motor efficiency in both powering and generating mode (characteristic map)

I The roundturn recuperation efficiency is (neglecting the special case
(Pel > 0) ∩ (Pdrive < 0)):

ηrec = η2battη
2
M ≈ 0.6
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Range

Discharge when driving the distance L
at constant speed on a level road:

∆Wbatt(L) = −PbattT

= −PbattL/v

= −L
v

(
P0 + Pdrive(v, 0, 0)/ηM

ηbatt

)
How to calculate the needed kWh per 100 km
with this formula? Multiply the above formula for

L = 100 000m with 1/3 600 000 kWh/Ws

In spite of recuperation, the discharge per km with changing speeds + stops is higher than
when driving at the constand average speed because:

I the nonlinearity ∝ v3 of the wind drag increases the average power to overcome it

I recuperation is not perfect

I stops add extra depletion ∆W = −TstopP0/ηbatt
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